
Privoxy Developer Manual
By: Privoxy Developers

The developer manual gives the users information on how to help the developer team.
It provides guidance on coding, testing, documentation and other issues.

You can find the latest version of the this manual at
http://www.privoxy.org/developer-manual/. Please see the Contact section
(contact.html) on how to contact the developers.

1. Introduction
Privoxy, as an heir to Junkbuster, is an Open Source project and licensed under the GPL. As such,
Privoxy development is potentially open to anyone who has the time, knowledge, and desire to contribute
in any capacity. Our goals are simply to continue the mission, to improve Privoxy, and to make it
available to as wide an audience as possible.

One does not have to be a programmer to contribute. Packaging, testing, and porting, are all important
jobs as well.

Quickstart to Privoxy Development
You’ll need an account on Sourceforge (http://sourceforge.net/) to support our development. Mail your
ID to the list (mailto:developers@privoxy.org) and wait until a project manager has added you.

For the time being (read, this section is under construction), please refer to the extensive comments in the
source code.

1

Privoxy Developer Manual

The CVS Repository
If you intend to help us with programming, documentation or packaging you will need write access to
our holy grail, the CVS repository. Please read this chapter completely before accessing via CVS.

Access to CVS
The project’s CVS repository is hosted on SourceForge. (http://sourceforge.net/) Please refer to the
chapters 6 and 7 in SF’s site documentation (http://sourceforge.net/docman/?group_id=1) for the
technical access details for your operating system. For historical reasons, the CVS server is called
cvs.ijbswa.sourceforge.net , the repository is calledijbswa , and the source tree module is called
current .

CVS Commit Guideline
The source tree is the heart of every software project. Every effort must be made to ensure that it is
readable, compilable and consistent at all times. We therefore ask anyone with CVS access to strictly
adhere to the following guidelines:

• Never (read:never, ever) be tempted to commit that small change without testing it thoroughly first.
When we’re close to a public release, ask a fellow developer to review your changes.

• Your commit message should give a concise overview ofwhat you changed(no big details) andwhy
you changed itJust check previous messages for good examples.

• Don’t use the same message on multiple files, unless it equally applies to all those files.

• If your changes span multiple files, and the code won’t recompile unless all changes are commited
(e.g. when changing the signature of a function), then commit all files one after another, without long
delays in beween. If necessary, prepare the commit messages in advance.

• Before changing things on CVS, make sure that your changes are in line with the team’s general
consensus on what should be done (see below).

2

Privoxy Developer Manual

Discussing Changes First
We don’t have a too formal policy on this, just use common sense. Hints: If it is..

1. ..a bugfix / clean-up / cosmetic thing: shoot

2. ..a new feature that can be turned off: shoot

3. ..a clear improvement w/o side effects on other parts of the code: shoot

4. ..a matter of taste: ask the list (mailto:developers@privoxy.org)

5. ..a major redesign of some part of the code: ask the list (mailto:developers@privoxy.org)

Note that near a major public release, we get a bit more cautious - if unsure, it doesn’t hurt to ask first.
There is always the possibility to submit a patch to the patches tracker
(http://sourceforge.net/tracker/?atid=311118&group_id=11118&func=browse) instead.

Documentation Guidelines
All formal documents are maintained in Docbook SGML and located in thedoc/source/* directory.
You will need Docbook (http://www.docbook.org), the Docbook DTD’s and the Docbook modular
stylesheets (or comparable alternatives), and either jade or openjade (recommended) installed in order to
build docs from source. Currently there isuser-manual(../user-manual/index.html),FAQ
(../faq/index.html), and, of course this, thedeveloper-manualin this format. TheREADME, AUTHORS
privoxy.1(man page) files are also now maintained as Docbook SGML. The finished files are all in the
top-level source directory are generated files! Also,index.html , the Privoxy home page, is maintained
as SGML.DO NOT edit these directly. Edit the SGML source, or contact someone involved in the
documentation (at present Stefan and Hal).

Other, less formal documents (e.g.LICENSE, INSTALL) are maintained as plain text files in the top-level
source directory. At least for the time being.

Packagers are encouraged to include this documentation. For those without the ability to build the docs
locally, text versions of each are kept in CVS. HTML versions are also now being kept in CVS under
doc/webserver/* .

Formal documents are built with the Makefile targets ofmake dok , or alternatelymake redhat-dok . If
you have problems, try both. The build process uses the document SGML sources indoc/source/*/*

to update all text files indoc/text/ and to update all HTML documents indoc/webserver/ .

3

Privoxy Developer Manual

Documentation writers should please make sure documents build successfully before committing to
CVS, if possible.

How do you update the webserver (i.e. the pages on privoxy.org)?

1. First, build the docs by runningmake dok (or alternatelymake redhat-dok).

2. Runmake webserver which copies all files fromdoc/webserver to the sourceforge webserver
via scp.

Finished docs should be occasionally submitted to CVS (doc/webserver/*/*.html) so that those
without the ability to build them locally, have access to them if needed. This is especially important just
prior to a new release! Please do thisafter the$VERSIONand other release specific data in
configure.in has been updated (this is done just prior to a new release).

Quickstart to Docbook and SGML
If you are not familiar with SGML, it is a markup language similar to HTML. Actually, not a mark up
language per se, but a language used to define markup languages. In fact, HTML is an SGML
application. Both will use “tags” to format text and other content. SGML tags can be much more varied,
and flexible, but do much of the same kinds of things. The tags, or “elements”, are definable in SGML.
There is no set “standards”. Since we are using Docbook, our tags are those that are defined by Docbook.
Much of how the finish document is rendered is determined by the “stylesheets”. The stylesheets
determine how each tag gets translated to HTML, or other formats.

Tags in Docbook SGML need to be always “closed”. If not, you will likely generate errors. Example:
<title >My Title </title >. They are also case-insensitive, but we strongly suggest using all lower
case. This keeps compatibility with [Docbook] XML.

Our documents use “sections” for the most part. Sections will be processed into HTML headers (e.g.h1

for sect1). The Docbook stylesheets will use these to also generate the Table of Contents for each doc.
Our TOC’s are set to a depth of three. Meaningsect1 , sect2 , andsect3 will have TOC entries, but
sect4 will not. Each section requires a<title > element, and at least one<para >. There is a limit of
five section levels in Docbook, but generally three should be sufficient for our purposes.

Some common elements that you likely will use:

<para></para>, paragraph delimiter. Most text needs to be within paragraph elements (there are some exceptions).
<emphasis></emphasis>, the stylesheets make this italics.
<filename></filename>, files and directories.
<command></command>, command examples.
<literallayout></literallayout>, like <pre >, more or less.
<itemizedlist></itemizedlist>, list with bullets.

4

Privoxy Developer Manual

<listitem></listitem>, member of the above.
<screen></screen>, screen output, implies<literallayout >.
<ulink url="example.com"></ulink>, like HTML <a> tag.
<quote></quote>, for, doh, quoting text.

Look at any of the existing docs for examples of all these and more.

You might also find “Writing Documentation Using DocBook - A Crash Course
(http://www.bureau-cornavin.com/opensource/crash-course/)” useful.

Privoxy Documentation Style
It will be easier if everyone follows a similar writing style. This just makes it easier to read what
someone else has written if it is all done in a similar fashion.

Here it is:

• All tags should be lower case.

• Tags delimiting ablockof text (even small blocks) should be on their own line. Like:

<para>
Some text goes here.
</para>

Tags marking individual words, or few words, should be in-line:

Just to<emphasis>emphasize</emphasis>, some text goes here.

• Tags should be nested and step indented for block text like: (except in-line tags)

<para>
<itemizedlist>
<para>
<listitem>
Some text goes here in our list example.
</listitem>
</para>
</itemizedlist>
</para>

This makes it easier to find the text amongst the tags ;-)

5

Privoxy Developer Manual

• Use white space to separate logical divisions within a document, like between sections. Running
everything together consistently makes it harder to read and work on.

• Do not hesitate to make comments. Comments can either use the<comment> element, or the<!--
--> style comment familiar from HTML. (Note in Docbook v4.x<comment> is replaced by
<remark>.)

• We have an international audience. Refrain from slang, or English idiosyncrasies (too many to list :).
Humor also does not translate well sometimes.

• Try to keep overall line lengths in source files to 80 characters or less for obvious reasons. This is not
always possible, with lengthy URLs for instance.

• Our documents are available in differing formats. Right now, they are just plain text, and HTML, but
PDF, and others is always a future possibility. Be careful with URLs (<ulink>), and avoid this
mistake:

My favorite site is<ulink url="http://example.com">here</ulink>.

This will render as “My favorite site is here”, which is not real helpful in a text doc. Better like this:

My favorite site is<ulink url="http://example.com">example.com</ulink>.

• All documents should be spell checked occasionally. aspell can check SGML with the-H option.
(ispell I think too.)

Privoxy Custom Entities
Privoxy documentation is using a number of customized “entities” to facilitate documentation
maintenance.

We are using a set of “boilerplate” files with generic text, that is used by multiple docs. This way we can
write something once, and use it repeatedly without having to re-write the same content over and over
again. If editing such a file, keep in mind that it should begeneric. That is the purpose; so it can be used
in varying contexts without additional modifications.

We are also using what Docbook calls “internal entities”. These are like variables in programming. Well,
sort of. For instance, we have thep-version entity that contains the current Privoxy version string. You
are strongly encouraged to use these where possible. Some of these obviously require re-setting with
each release (done by the Makefile). A sampling of custom entities are listed below. See any of the main
docs for examples.

6

Privoxy Developer Manual

• Re- “boilerplate” text entities are defined like:

<!entity supported SYSTEM "supported.sgml" >

In this example, the contents of the file,supported.sgml is available for inclusion anywhere in the
doc. To make this happen, just reference the now defined entity:&supported; (starts with an
ampersand and ends with a semi-colon), and the contents will be dumped into the finished doc at that
point.

• Commonly used “internal entities”:
p-version: the Privoxy version string, e.g. “2.9.14”.
p-status: the project status, either “alpha”, “beta”, or “stable”.
p-not-stable: use to conditionally include text in “not stable” releases (e.g. “beta”).
p-stable: just the opposite.
p-text: this doc is only generated as text.

There are others in various places that are defined for a specific purpose. Read the source!

Coding Guidelines

Introduction
This set of standards is designed to make our lives easier. It is developed with the simple goal of helping
us keep the "new and improved Privoxy" consistent and reliable. Thus making maintenance easier and
increasing chances of success of the project.

And that of course comes back to us as individuals. If we can increase our development and product
efficiencies then we can solve more of the request for changes/improvements and in general feel good
about ourselves. ;->

Using Comments

Comment, Comment, Comment

Explanation:

7

Privoxy Developer Manual

Comment as much as possible without commenting the obvious. For example do not comment
"aVariable is equal to bVariable". Instead explain why aVariable should be equal to the bVariable. Just
because a person can read code does not mean they will understand why or what is being done. A reader
may spend a lot more time figuring out what is going on when a simple comment or explanation would
have prevented the extra research. Please help your brother IJB’ers out!

The comments will also help justify the intent of the code. If the comment describes something different
than what the code is doing then maybe a programming error is occurring.

Example:

/* if page size greater than 1k ... */
if (PageLength() > 1024)
{

... "block" the page up ...
}

/* if page size is small, send it in blocks */
if (PageLength() > 1024)
{

... "block" the page up ...
}

This demonstrates 2 cases of "what not to do". The first is a
"syntax comment". The second is a comment that does not fit what
is actually being done.

Use blocks for comments

Explanation:

Comments can help or they can clutter. They help when they are differentiated from the code they
describe. One line comments do not offer effective separation between the comment and the code. Block
identifiers do, by surrounding the code with a clear, definable pattern.

Example:

/***
* This will stand out clearly in your code!
***/

if (thisVariable == thatVariable)
{

DoSomethingVeryImportant();
}

8

Privoxy Developer Manual

/* unfortunately, this may not */
if (thisVariable == thatVariable)
{

DoSomethingVeryImportant();
}

if (thisVariable == thatVariable) /* this may not either */
{

DoSomethingVeryImportant();
}

Exception:

If you are trying to add a small logic comment and do not wish to "disrupt" the flow of the code, feel free
to use a 1 line comment which is NOT on the same line as the code.

Keep Comments on their own line

Explanation:

It goes back to the question of readability. If the comment is on the same line as the code it will be harder
to read than the comment that is on its own line.

There are three exceptions to this rule, which should be violated freely and often: during the definition of
variables, at the end of closing braces, when used to comment parameters.

Example:

/***
* This will stand out clearly in your code,
* But the second example won’t.
***/

if (thisVariable == thatVariable)
{

DoSomethingVeryImportant();
}

if (thisVariable == thatVariable) /*can you see me?*/
{

DoSomethingVeryImportant(); /*not easily*/
}

9

Privoxy Developer Manual

/***
* But, the encouraged exceptions:
***/

int urls_read = 0; /* # of urls read + rejected */
int urls_rejected = 0; /* # of urls rejected */

if (1 == X)
{

DoSomethingVeryImportant();
}

short DoSomethingVeryImportant(
short firstparam, /* represents something */
short nextparam /* represents something else */)

{
...code here...

} /* -END- DoSomethingVeryImportant */

Comment each logical step

Explanation:

Logical steps should be commented to help others follow the intent of the written code and comments
will make the code more readable.

If you have 25 lines of code without a comment, you should probably go back into it to see where you
forgot to put one.

Most "for", "while", "do", etc... loops _probably_ need a comment. After all, these are usually major
logic containers.

Comment All Functions Thoroughly

Explanation:

A reader of the code should be able to look at the comments just prior to the beginning of a function and
discern the reason for its existence and the consequences of using it. The reader should not have to read
through the code to determine if a given function is safe for a desired use. The proper information
thoroughly presented at the introduction of a function not only saves time for subsequent maintenance or
debugging, it more importantly aids in code reuse by allowing a user to determine the safety and

10

Privoxy Developer Manual

applicability of any function for the problem at hand. As a result of such benefits, all functions should
contain the information presented in the addendum section of this document.

Comment at the end of braces if the content is more than one screen
length

Explanation:

Each closing brace should be followed on the same line by a comment that describes the origination of
the brace if the original brace is off of the screen, or otherwise far away from the closing brace. This will
simplify the debugging, maintenance, and readability of the code.

As a suggestion , use the following flags to make the comment and its brace more readable:

use following a closing brace: } /* -END- if() or while () or etc... */

Example:

if (1 == X)
{

DoSomethingVeryImportant();
...some long list of commands...

} /* -END- if x is 1 */

or:

if (1 == X)
{

DoSomethingVeryImportant();
...some long list of commands...

} /* -END- if (1 == X) */

Naming Conventions

Variable Names

Explanation:

Use all lowercase, and separate words via an underscore (’_’). Do not start an identifier with an
underscore. (ANSI C reserves these for use by the compiler and system headers.) Do not use identifiers

11

Privoxy Developer Manual

which are reserved in ANSI C++. (E.g. template, class, true, false, ...). This is in case we ever decide to
port Privoxy to C++.

Example:

int ms_iis5_hack = 0;

Instead of:

int msiis5hack = 0; int msIis5Hack = 0;

Function Names

Explanation:

Use all lowercase, and separate words via an underscore (’_’). Do not start an identifier with an
underscore. (ANSI C reserves these for use by the compiler and system headers.) Do not use identifiers
which are reserved in ANSI C++. (E.g. template, class, true, false, ...). This is in case we ever decide to
port Privoxy to C++.

Example:

int load_some_file(struct client_state *csp)

Instead of:

int loadsomefile(struct client_state *csp)
int loadSomeFile(struct client_state *csp)

Header file prototypes

Explanation:

Use a descriptive parameter name in the function prototype in header files. Use the same parameter name
in the header file that you use in the c file.

Example:

(.h) extern int load_aclfile(struct client_state *csp);
(.c) int load_aclfile(struct client_state *csp)

12

Privoxy Developer Manual

Instead of:

(.h) extern int load_aclfile(struct client_state *); or
(.h) extern int load_aclfile();
(.c) int load_aclfile(struct client_state *csp)

Enumerations, and #defines

Explanation:

Use all capital letters, with underscores between words. Do not start an identifier with an underscore.
(ANSI C reserves these for use by the compiler and system headers.)

Example:

(enumeration) : enum Boolean { FALSE, TRUE };
(#define) : #define DEFAULT_SIZE 100;

Note:We have a standard naming scheme for #defines that toggle a feature in the preprocessor:
FEATURE_>, where > is a short (preferably 1 or 2 word) description.

Example:

#define FEATURE_FORCE 1

#ifdef FEATURE_FORCE
#define FORCE_PREFIX blah
#endif /* def FEATURE_FORCE */

Constants

Explanation:

Spell common words out entirely (do not remove vowels).

Use only widely-known domain acronyms and abbreviations. Capitalize all letters of an acronym.

Use underscore (_) to separate adjacent acronyms and abbreviations. Never terminate a name with an
underscore.

Example:

#define USE_IMAGE_LIST 1

13

Privoxy Developer Manual

Instead of:

#define USE_IMG_LST 1 or
#define _USE_IMAGE_LIST 1 or
#define USE_IMAGE_LIST_ 1 or
#define use_image_list 1 or
#define UseImageList 1

Using Space

Put braces on a line by themselves.

Explanation:

The brace needs to be on a line all by itself, not at the end of the statement. Curly braces should line up
with the construct that they’re associated with. This practice makes it easier to identify the opening and
closing braces for a block.

Example:

if (this == that)
{

...
}

Instead of:

if (this == that) { ... }

or

if (this == that) { ... }

Note:In the special case that the if-statement is inside a loop, and it is trivial, i.e. it tests for a condition
that is obvious from the purpose of the block, one-liners as above may optically preserve the loop
structure and make it easier to read.

Status:developer-discretion.

Example exception:

while (more lines are read)
{

14

Privoxy Developer Manual

/* Please document what is/is not a comment line here */
if (it’s a comment) continue;

do_something(line);
}

ALL control statements should have a block

Explanation:

Using braces to make a block will make your code more readable and less prone to error. All control
statements should have a block defined.

Example:

if (this == that)
{

DoSomething();
DoSomethingElse();

}

Instead of:

if (this == that) DoSomething(); DoSomethingElse();

or

if (this == that) DoSomething();

Note:The first example in "Instead of" will execute in a manner other than that which the developer
desired (per indentation). Using code braces would have prevented this "feature". The "explanation" and
"exception" from the point above also applies.

Do not belabor/blow-up boolean expressions

Example:

structure->flag = (condition);

Instead of:

if (condition) { structure->flag = 1; } else { structure->flag = 0; }

Note:The former is readable and concise. The later is wordy and inefficient. Please assume that any
developer new to the project has at least a "good" knowledge of C/C++. (Hope I do not offend by that
last comment ... 8-)

15

Privoxy Developer Manual

Use white space freely because it is free

Explanation:

Make it readable. The notable exception to using white space freely is listed in the next guideline.

Example:

int firstValue = 0;
int someValue = 0;
int anotherValue = 0;
int thisVariable = 0;

if (thisVariable == thatVariable)

firstValue = oldValue + ((someValue - anotherValue) - whatever)

Don’t use white space around structure operators

Explanation:

- structure pointer operator ("->") - member operator (".") - functions and parentheses

It is a general coding practice to put pointers, references, and function parentheses next to names. With
spaces, the connection between the object and variable/function name is not as clear.

Example:

aStruct->aMember;
aStruct.aMember;
FunctionName();

Instead of:aStruct -> aMember; aStruct . aMember; FunctionName ();

Make the last brace of a function stand out

Example:

int function1(...)
{

...code...
return(retCode);

} /* -END- function1 */

16

Privoxy Developer Manual

int function2(...)
{
} /* -END- function2 */

Instead of:

int function1(...) { ...code... return(retCode); } int function2(...) { }

Note:Use 1 blank line before the closing brace and 2 lines afterward. This makes the end of function
standout to the most casual viewer. Although function comments help separate functions, this is still a
good coding practice. In fact, I follow these rules when using blocks in "for", "while", "do" loops, and
long if {} statements too. After all whitespace is free!

Status:developer-discretion on the number of blank lines. Enforced is the end of function comments.

Use 3 character indentions

Explanation:

If some use 8 character TABs and some use 3 character TABs, the code can look *very* ragged. So use 3
character indentions only. If you like to use TABs, pass your code through a filter such as "expand -t3"
before checking in your code.

Example:

static const char * const url_code_map[256] =
{

NULL, ...
};

int function1(...)
{

if (1)
{

return(ALWAYS_TRUE);
}
else
{

return(HOW_DID_YOU_GET_HERE);
}

return(NEVER_GETS_HERE);

}

17

Privoxy Developer Manual

Initializing

Initialize all variables

Explanation:

Do not assume that the variables declared will not be used until after they have been assigned a value
somewhere else in the code. Remove the chance of accidentally using an unassigned variable.

Example:

short anShort = 0;
float aFloat = 0;
struct *ptr = NULL;

Note:It is much easier to debug a SIGSEGV if the message says you are trying to access memory
address 00000000 and not 129FA012; or arrayPtr[20] causes a SIGSEV vs. arrayPtr[0].

Status:developer-discretion if and only if the variable is assigned a value "shortly after" declaration.

Functions

Name functions that return a boolean as a question.

Explanation:

Value should be phrased as a question that would logically be answered as a true or false statement

Example:

ShouldWeBlockThis();
ContainsAnImage();
IsWebPageBlank();

Always specify a return type for a function.

Explanation:

The default return for a function is an int. To avoid ambiguity, create a return for a function when the
return has a purpose, and create a void return type if the function does not need to return anything.

18

Privoxy Developer Manual

Minimize function calls when iterating by using variables

Explanation:

It is easy to write the following code, and a clear argument can be made that the code is easy to
understand:

Example:

for (size_t cnt = 0; cnt < blockListLength(); cnt ++)
{

....
}

Note:Unfortunately, this makes a function call for each and every iteration. This increases the overhead
in the program, because the compiler has to look up the function each time, call it, and return a value.
Depending on what occurs in the blockListLength() call, it might even be creating and destroying
structures with each iteration, even though in each case it is comparing "cnt" to the same value, over and
over. Remember too - even a call to blockListLength() is a function call, with the same overhead.

Instead of using a function call during the iterations, assign the value to a variable, and evaluate using the
variable.

Example:

size_t len = blockListLength();

for (size_t cnt = 0; cnt < len; cnt ++)
{

....
}

Exceptions:if the value of blockListLength() *may* change or could *potentially* change, then you
must code the function call in the for/while loop.

Pass and Return by Const Reference

Explanation:

This allows a developer to define a const pointer and call your function. If your function does not have
the const keyword, we may not be able to use your function. Consider strcmp, if it were defined as:
extern int strcmp(char *s1, char *s2);

I could then not use it to compare argv’s in main: int main(int argc, const char *argv[]) { strcmp(
argv[0], "privoxy"); }

Both these pointers are *const*! If the c runtime library maintainers do it, we should too.

19

Privoxy Developer Manual

Pass and Return by Value

Explanation:

Most structures cannot fit onto a normal stack entry (i.e. they are not 4 bytes or less). Aka, a function
declaration like: int load_aclfile(struct client_state csp)

would not work. So, to be consistent, we should declare all prototypes with "pass by value": int
load_aclfile(struct client_state *csp)

Names of include files

Explanation:

Your include statements should contain the file name without a path. The path should be listed in the
Makefile, using -I as processor directive to search the indicated paths. An exception to this would be for
some proprietary software that utilizes a partial path to distinguish their header files from system or other
header files.

Example:

#include <iostream.h > /* This is not a local include */
#include "config.h" /* This IS a local include */

Exception:

/* This is not a local include, but requires a path element. */
#include <sys/fileName.h >

Note:Please! do not add "-I." to the Makefile without a _very_ good reason. This duplicates the #include
"file.h" behavior.

Provide multiple inclusion protection

Explanation:

Prevents compiler and linker errors resulting from redefinition of items.

Wrap each header file with the following syntax to prevent multiple inclusions of the file. Of course,
replace PROJECT_H with your file name, with "." Changed to "_", and make it uppercase.

Example:

#ifndef PROJECT_H_INCLUDED

20

Privoxy Developer Manual

#define PROJECT_H_INCLUDED
...

#endif /* ndef PROJECT_H_INCLUDED */

Use ‘extern "C"‘ when appropriate

Explanation:

If our headers are included from C++, they must declare our functions as ‘extern "C"‘. This has no cost
in C, but increases the potential re-usability of our code.

Example:

#ifdef __cplusplus
extern "C"
{
#endif /* def __cplusplus */

... function definitions here ...

#ifdef __cplusplus
}
#endif /* def __cplusplus */

Where Possible, Use Forward Struct Declaration Instead of Includes

Explanation:

Useful in headers that include pointers to other struct’s. Modifications to excess header files may cause
needless compiles.

Example:

/***
* We’re avoiding an include statement here!
***/

struct file_list;
extern file_list *xyz;

Note:If you declare "file_list xyz;" (without the pointer), then including the proper header file is
necessary. If you only want to prototype a pointer, however, the header file is unnecessary.

Status:Use with discretion.

21

Privoxy Developer Manual

General Coding Practices

Turn on warnings

Explanation

Compiler warnings are meant to help you find bugs. You should turn on as many as possible. With GCC,
the switch is "-Wall". Try and fix as many warnings as possible.

Provide a default case for all switch statements

Explanation:

What you think is guaranteed is never really guaranteed. The value that you don’t think you need to
check is the one that someday will be passed. So, to protect yourself from the unknown, always have a
default step in a switch statement.

Example:

switch(hash_string(cmd))
{

case hash_actions_file :
... code ...
break;

case hash_confdir :
... code ...
break;

default :
log_error(...);
... anomaly code goes here ...
continue; / break; / exit(1); / etc ...

} /* end switch(hash_string(cmd)) */

Note:If you already have a default condition, you are obviously exempt from this point. Of note, most of
the WIN32 code calls ‘DefWindowProc’ after the switch statement. This API call *should* be included
in a default statement.

Another Note:This is not so much a readability issue as a robust programming issue. The "anomaly code
goes here" may be no more than a print to the STDERR stream (as in load_config). Or it may really be
an ABEND condition.

Status:Programmer discretion is advised.

22

Privoxy Developer Manual

Try to avoid falling through cases in a switch statement.

Explanation:

In general, you will want to have a ’break’ statement within each ’case’ of a switch statement. This
allows for the code to be more readable and understandable, and furthermore can prevent unwanted
surprises if someone else later gets creative and moves the code around.

The language allows you to plan the fall through from one case statement to another simply by omitting
the break statement within the case statement. This feature does have benefits, but should only be used in
rare cases. In general, use a break statement for each case statement.

If you choose to allow fall through, you should comment both the fact of the fall through and reason why
you felt it was necessary.

Use ’long’ or ’short’ Instead of ’int’

Explanation:

On 32-bit platforms, int usually has the range of long. On 16-bit platforms, int has the range of short.

Status:open-to-debate. In the case of most FSF projects (including X/GNU-Emacs), there are typedefs
to int4, int8, int16, (or equivalence ... I forget the exact typedefs now). Should we add these to IJB now
that we have a "configure" script?

Don’t mix size_t and other types

Explanation:

The type of size_t varies across platforms. Do not make assumptions about whether it is signed or
unsigned, or about how long it is. Do not compare a size_t against another variable of a different type (or
even against a constant) without casting one of the values. Try to avoid using size_t if you can.

Declare each variable and struct on its own line.

Explanation:

It can be tempting to declare a series of variables all on one line. Don’t.

Example:

long a = 0;
long b = 0;
long c = 0;

23

Privoxy Developer Manual

Instead of:

long a, b, c;

Explanation:- there is more room for comments on the individual variables - easier to add new variables
without messing up the original ones - when searching on a variable to find its type, there is less clutter
to "visually" eliminate

Exceptions:when you want to declare a bunch of loop variables or other trivial variables; feel free to
declare them on 1 line. You should, although, provide a good comment on their functions.

Status:developer-discretion.

Use malloc/zalloc sparingly

Explanation:

Create a local struct (on the stack) if the variable will live and die within the context of one function call.

Only "malloc" a struct (on the heap) if the variable’s life will extend beyond the context of one function
call.

Example:

If a function creates a struct and stores a pointer to it in a
list, then it should definitely be allocated via ‘malloc’.

The Programmer Who Uses ’malloc’ is Responsible for Ensuring ’free’

Explanation:

If you have to "malloc" an instance, you are responsible for insuring that the instance is ‘free’d, even if
the deallocation event falls within some other programmer’s code. You are also responsible for ensuring
that deletion is timely (i.e. not too soon, not too late). This is known as "low-coupling" and is a "good
thing (tm)". You may need to offer a free/unload/destuctor type function to accommodate this.

Example:

int load_re_filterfile(struct client_state *csp) { ... }
static void unload_re_filterfile(void *f) { ... }

Exceptions:

The developer cannot be expected to provide ‘free’ing functions for C run-time library functions ... such
as ‘strdup’.

24

Privoxy Developer Manual

Status:developer-discretion. The "main" use of this standard is for allocating and freeing data structures
(complex or nested).

Add loaders to the ‘file_list’ structure and in order

Explanation:

I have ordered all of the "blocker" file code to be in alpha order. It is easier to add/read new blockers
when you expect a certain order.

Note:It may appear that the alpha order is broken in places by POPUP tests coming before PCRS tests.
But since POPUPs can also be referred to as KILLPOPUPs, it is clear that it should come first.

"Uncertain" new code and/or changes to existing code, use FIXME

Explanation:

If you have enough confidence in new code or confidence in your changes, but are not *quite* sure of the
repercussions, add this:

/* FIXME: this code has a logic error on platform XYZ, * attempting to fix */ #ifdef PLATFORM
...changed code here... #endif

or:

/* FIXME: I think the original author really meant this... */ ...changed code here...

or:

/* FIXME: new code that *may* break something else... */ ...new code here...

Note:If you make it clear that this may or may not be a "good thing (tm)", it will be easier to identify
and include in the project (or conversely exclude from the project).

Addendum: Template for files and function comment blocks:
Example for file comments:

const char FILENAME_rcs[] = "$Id: developer-manual.sgml,v 1.37 2002/04/26 17:23:29 swa Exp $";
/***

*
* File : $Source$
*
* Purpose : (Fill me in with a good description!)

25

Privoxy Developer Manual

*
* Copyright : Written by and Copyright (C) 2001 the SourceForge
* Privoxy team. http://www.privoxy.org/
*
* Based on the Internet Junkbuster originally written
* by and Copyright (C) 1997 Anonymous Coders and
* Junkbusters Corporation. http://www.junkbusters.com
*
* This program is free software; you can redistribute it
* and/or modify it under the terms of the GNU General
* Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* The GNU General Public License should be included with
* this file. If not, you can view it at
* http://www.gnu.org/copyleft/gpl.html
* or write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Revisions :
* Log
*
***/

#include "config.h"

...necessary include files for us to do our work...

const char FILENAME_h_rcs[] = FILENAME_H_VERSION;

Note:This declares the rcs variables that should be added to the "show-proxy-args" page. If this is a
brand new creation by you, you are free to change the "Copyright" section to represent the rights you
wish to maintain.

Note:The formfeed character that is present right after the comment flower box is handy for
(X|GNU)Emacs users to skip the verbiage and get to the heart of the code (via ‘forward-page’ and
‘backward-page’). Please include it if you can.

26

Privoxy Developer Manual

Example for file header comments:

#ifndef _FILENAME_H
#define _FILENAME_H
#define FILENAME_H_VERSION "$Id: developer-manual.sgml,v 1.37 2002/04/26 17:23:29 swa Exp $"
/***

*
* File : $Source$
*
* Purpose : (Fill me in with a good description!)
*
* Copyright : Written by and Copyright (C) 2001 the SourceForge
* Privoxy team. http://www.privoxy.org/
*
* Based on the Internet Junkbuster originally written
* by and Copyright (C) 1997 Anonymous Coders and
* Junkbusters Corporation. http://www.junkbusters.com
*
* This program is free software; you can redistribute it
* and/or modify it under the terms of the GNU General
* Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will
* be useful, but WITHOUT ANY WARRANTY; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU General Public
* License for more details.
*
* The GNU General Public License should be included with
* this file. If not, you can view it at
* http://www.gnu.org/copyleft/gpl.html
* or write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Revisions :
* Log
*
***/

#include "project.h"

#ifdef __cplusplus

27

Privoxy Developer Manual

extern "C" {
#endif

... function headers here ...

/* Revision control strings from this header and associated .c file */
extern const char FILENAME_rcs[];
extern const char FILENAME_h_rcs[];

#ifdef __cplusplus
} /* extern "C" */
#endif

#endif /* ndef _FILENAME_H */

/*
Local Variables:
tab-width: 3
end:

*/

Example for function comments:

/***
*
* Function : FUNCTION_NAME
*
* Description : (Fill me in with a good description!)
*
* parameters :
* 1 : param1 = pointer to an important thing
* 2 : x = pointer to something else
*
* Returns : 0 => Ok, everything else is an error.
*
***/

int FUNCTION_NAME(void *param1, const char *x)
{

...
return(0);

}

28

Privoxy Developer Manual

Note:If we all follow this practice, we should be able to parse our code to create a "self-documenting"
web page.

Testing Guidelines
To be filled.

Testplan for releases
Explain release numbers. major, minor. developer releases. etc.

1. Remove any existing rpm with rpm -e

2. Remove any file that was left over. This includes (but is not limited to)

• /var/log/privoxy

• /etc/privoxy

• /usr/sbin/privoxy

• /etc/init.d/privoxy

• /usr/doc/privoxy*

3. Install the rpm. Any error messages?

4. start,stop,status Privoxy with the specific script (e.g. /etc/rc.d/init/privoxy stop). Reboot your
machine. Does autostart work?

5. Start browsing. Does Privoxy work? Logfile written?

6. Remove the rpm. Any error messages? All files removed?

Test reports
Please submit test reports only with the test form
(http://sourceforge.net/tracker/?func=add&group_id=11118&atid=395005) at sourceforge. Three simple

29

Privoxy Developer Manual

steps:

• Select category: the distribution you test on.

• Select group: the version of Privoxy that we are about to release.

• Fill the Summary and Detailed Description with something intelligent (keep it short and precise).

Do not mail to the mailinglist (we cannot keep track on issues there).

Releasing a New Version
When we release versions of Privoxy, our work leaves our cozy secret lab and has to work in the cold
RealWorld[tm]. Once it is released, there is no way to call it back, so it is very important that great care
is taken to ensure that everything runs fine, and not to introduce problems in the very last minute.

So when releasing a new version, please adhere exactly to the procedure outlined in this chapter.

The following programs are required to follow this process:ncftpput (ncftp),scp, ssh (ssh),gmake

(GNU’s version of make), autoconf, cvs.

In the following text, replace X, Y and Z with the actual version number (X = major, Y = minor, Z =
point):

Before the Release
The followingmust be done by one of the developersprior to each new release.

• Make sure that everybody who has worked on the code in the last couple of days has had a chance to
yell “no!” in case they have pending changes/fixes in their pipelines.

• Increment the version number and increase or reset the RPM release number inconfigure.in as
appropriate.

• If the defaultactionsfile has changed since last release, bump up its version info in this line:

{+add-header{X-Actions-File-Version: A.B} -filter -no-popups}

Then change the version info in doc/webserver/actions/index.php, line:
’$required_actions_file_version = "A.B";’

30

Privoxy Developer Manual

• If the HTML documentation is not in sync with the SGML sources you need to regenerate it. (If in
doubt, just do it.) See the Section "Updating the webserver" in this manual for details.

• Commit all files that were changed in the above steps!

• Tag all files in CVS with the version number with “cvs tag v_X_Y_Z”. Don’t use vX_Y_Z,
ver_X_Y_Z, v_X.Y.Z (won’t work) etc.

Building and Releasing the Packages
Now the individual packages can be built and released. Note that for GPL reasons the first package to be
released is always the source tarball.

For all types of packages, including the source tarball,you must make sure that you build from clean
sources by exporting the right version from CVS into an empty directory:.

mkdir dist # delete or choose different name if it already exists
cd dist
cvs -d:pserver:anonymous@cvs.ijbswa.sourceforge.net:/cvsroot/ijbswa login
cvs -z3 -d:pserver:anonymous@cvs.ijbswa.sourceforge.net:/cvsroot/ijbswa export -

r v_X_Y_Z current

Do NOT changea single bit, including, but not limited to version information after export from CVS.
This is to make sure that all release packages, and with them, all future bug reports, are based on exactly
the same code.

Please find additional instructions for the source tarball and the individual platform dependent binary
packages below.

Source Tarball

First,make sure that you have freshly exported the right version into an empty directory. (See "Building
and releasing packages" above). Then run:

cd current
autoheader && autoconf && ./configure

31

Privoxy Developer Manual

Then do:

make tarball-dist

To upload the package to Sourceforge, simply issue

make tarball-upload

Go to the displayed URL and release the file publicly on Sourceforge. For the change log field, use the
relevant section of theChangeLog file.

SuSE or Red Hat

First,make sure that you have freshly exported the right version into an empty directory. (See "Building
and releasing packages" above). Then run:

cd current
autoheader && autoconf && ./configure

Then do

make suse-dist (or make redhat-dist)

To upload the package to Sourceforge, simply issue

make suse-upload (or make redhat-upload)

Go to the displayed URL and release the file publicly on Sourceforge. Use the release notes and çhange
log from the source tarball package.

32

Privoxy Developer Manual

OS/2

First,make sure that you have freshly exported the right version into an empty directory. (See "Building
and releasing packages" above). Then get the OS/2 Setup module:

cvs -z3 -d:pserver:anonymous@cvs.ijbswa.sourceforge.net:/cvsroot/ijbswa co os2setup

You will need a mix of development tools. The main compilation takes place with IBM Visual Age C++.
Some ancillary work takes place with GNU tools, available from various sources like hobbes.nmsu.edu.
Specificially, you will needautoheader , autoconf andsh tools. The packaging takes place with
WarpIN, available from various sources, including its home page: xworkplace
(http://www.xworkplace.org/).

Change directory to theos2setup directory. Edit the os2build.cmd file to set the final executable
filename. For example,

installExeName=’privoxyos2_setup_X.Y.Z.exe’

Next, edit theIJB.wis file so the release number matches in thePACKAGEIDsection:

PACKAGEID="Privoxy Team\Privoxy\Privoxy Package\X\Y\Z"

You’re now ready to build. Run:

os2build

You will find the WarpIN-installable executable in the./files directory. Upload this anonymously to
uploads.sourceforge.net/incoming , create a release for it, and you’re done. Use the release notes
and Change Log from the source tarball package.

Solaris

Login to Sourceforge’s compilefarm via ssh:

ssh cf.sourceforge.net

33

Privoxy Developer Manual

Choose the right operating system (not the Debian one). When logged in,make sure that you have freshly
exported the right version into an empty directory. (See "Building and releasing packages" above). Then
run:

cd current
autoheader && autoconf && ./configure

Then run

gmake solaris-dist

which creates a gzip’ed tar archive. Sadly, you cannot usemake solaris-uploadon the Sourceforge
machine (no ncftpput). You now have to manually upload the archive to Sourceforge’s ftp server and
release the file publicly. Use the release notes and Change Log from the source tarball package.

Windows

You should ensure you have the latest version of Cygwin (from http://www.cygwin.com/). Run the
following commands from within a Cygwin bash shell.

First,make sure that you have freshly exported the right version into an empty directory. (See "Building
and releasing packages" above). Then get the Windows setup module:

cvs -z3 -d:pserver:anonymous@cvs.ijbswa.sourceforge.net:/cvsroot/ijbswa co win-
setup

Then you can build the package. This is fully automated, and is controlled by
winsetup/GNUmakefile . All you need to do is:

cd winsetup
make

34

Privoxy Developer Manual

Now you can manually renameprivoxy_setup.exe to privoxy_setup_X_Y_Z.exe , and upload it
to SourceForge. When releasing the package on SourceForge, use the release notes and Change Log
from the source tarball package.

Debian

First,make sure that you have freshly exported the right version into an empty directory. (See "Building
and releasing packages" above). Then, run:

cd current
autoheader && autoconf && ./configure

Then do FIXME.

Mac OSX

First,make sure that you have freshly exported the right version into an empty directory. (See "Building
and releasing packages" above). Then get the Mac OSX setup module:

cvs -z3 -d:pserver:anonymous@cvs.ijbswa.sourceforge.net:/cvsroot/ijbswa co os-
xsetup

Then run:

cd osxsetup
build

This will run autoheader , autoconf andconfigure as well asmake. Finally, it will copy over the
necessary files to the ./osxsetup/files directory for further processing byPackageMaker .

Bring up PackageMaker with the PrivoxyPackage.pmsp definition file, modify the package name to
match the release, and hit the "Create package" button. If you specify ./Privoxy.pkg as the output
package name, you can then create the distributable zip file with the command:

zip -r privoxyosx_setup_x.y.z.zip Privoxy.pkg

35

Privoxy Developer Manual

You can then uploadprivoxyosx_setup_x.y.z.zip anonymously to
uploads.sourceforge.net/incoming , create a release for it, and you’re done. Use the release notes
and Change Log from the source tarball package.

FreeBSD

Login to Sourceforge’s compilefarm via ssh:

ssh cf.sourceforge.net

Choose the right operating system. When logged in,make sure that you have freshly exported the right
version into an empty directory. (See "Building and releasing packages" above). Then run:

cd current
autoheader && autoconf && ./configure

Then run:

gmake freebsd-dist

which creates a gzip’ed tar archive. Sadly, you cannot usemake freebsd-uploadon the Sourceforge
machine (no ncftpput). You now have to manually upload the archive to Sourceforge’s ftp server and
release the file publicly. Use the release notes and Change Log from the source tarball package.

HP-UX 11

First,make sure that you have freshly exported the right version into an empty directory. (See "Building
and releasing packages" above). Then run:

cd current
autoheader && autoconf && ./configure

Then do FIXME.

36

Privoxy Developer Manual

Amiga OS

First,make sure that you have freshly exported the right version into an empty directory. (See "Building
and releasing packages" above). Then run:

cd current
autoheader && autoconf && ./configure

Then do FIXME.

AIX

Login to Sourceforge’s compilefarm via ssh:

ssh cf.sourceforge.net

Choose the right operating system. When logged in,make sure that you have freshly exported the right
version into an empty directory. (See "Building and releasing packages" above). Then run:

cd current
autoheader && autoconf && ./configure

Then run:

make aix-dist

which creates a gzip’ed tar archive. Sadly, you cannot usemake aix-uploadon the Sourceforge machine
(no ncftpput). You now have to manually upload the archive to Sourceforge’s ftp server and release the
file publicly. Use the release notes and Change Log from the source tarball package.

After the Release
When all (or: most of the) packages have been uploaded and made available, send an email to the
announce mailing list (mailto:ijbswa-announce@lists.sourceforge.net), Subject: "Version X.Y.Z available

37

Privoxy Developer Manual

for download". Be sure to include the download location
(http://sourceforge.net/project/showfiles.php?group_id=11118), the release notes and the change log.

Update the Webserver
When updating the webserver, please follow these steps to make sure that no broken links, incosistent
contents or permission problems will occur:

If you have changed anything in the documentation source SGML files, do:

make dok # (or make redkat-dok if make dok doesn’t work for you)

That will generatedoc/webserver/user-manual , doc/webserver/developer-manual ,
doc/webserver/faq anddoc/webserver/index.html automatically.

If you changed the manual page source, generate
doc/webserver/man-page/privoxy-man-page.html by running “make man”. (This is a separate
target due to dependencies on some obscure perl scripts. See comments inGNUmakefile .)

If you want to add new files to the webserver, create them locally in thedoc/webserver/* directory (or
create new directories underdoc/webserver).

Next, commit any changes from the above steps to CVS. All set? Then do

make webserver

This will do the upload to the webserver (http://www.privoxy.org/) (www.privoxy.org) and ensure all
files and directories there are group writable.

Please doNOT use any other means of transferring files to the webserver to avoid permission problems.

Contacting the developers, Bug Reporting and Feature
Requests

We value your feedback. However, to provide you with the best support, please note the following
sections.

38

Privoxy Developer Manual

Get Support

To get support, use the Sourceforge Support Forum:

http://sourceforge.net/tracker/?group_id=11118&atid=211118

Report bugs

To submit bugs, use the Sourceforge Bug Forum:

http://sourceforge.net/tracker/?group_id=11118&atid=111118.

Make sure that the bug has not already been submitted. Please try to verify that it is a Privoxy bug, and
not a browser or site bug first. If you are using your own custom configuration, please try the stock
configs to see if the problem is a configuration related bug. And if not using the latest development
snapshot, please try the latest one. Or even better, CVS sources. Please be sure to include the Privoxy
version, platform, browser, any pertinent log data, any other relevant details (please be specific) and, if
possible, some way to reproduce the bug.

Request new features

To submit ideas on new features, use the Sourceforge feature request forum:

http://sourceforge.net/tracker/?atid=361118&group_id=11118&func=browse.

39

Privoxy Developer Manual

Report ads or other filter problems
You can also send feedback on websites that Privoxy has problems with. Please bookmark the following
link: “Privoxy - Submit Filter Feedback”
(javascript:w=Math.floor(screen.width/2);h=Math.floor(screen.height*0.9);void(window.open(’http://www.privoxy.org/actions’,’Feedback’,’screenx=’+w+’,width=’+w+’,height=’+h+’,scrollbars=yes,toolbar=no,location=no,directories=no,status=no,menubar=no,copyhistory=no’).focus());).
Once you surf to a page with problems, use the bookmark to send us feedback. We will look into the
issue as soon as possible.

New, improveddefault.action files will occasionally be made available based on your feedback.
These will be announced on the ijbswa-announce
(http://lists.sourceforge.net/lists/listinfo/ijbswa-announce) list.

Other

For any other issues, feel free to use the mailing lists:

http://sourceforge.net/mail/?group_id=11118.

Anyone interested in actively participating in development and related discussions can also join the
appropriate mailing list. Archives are available, too. See the page on Sourceforge.

Copyright and History

Copyright
Privoxy is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details, which is available from the Free
Software Foundation, Inc, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

40

Privoxy Developer Manual

You should have received a copy of the GNU General Public License
(http://www.gnu.org/copyleft/gpl.html) along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

History
Privoxy is evolved, and derived from, the Internet Junkbuster, with many improvments and
enhancements over the original.

Junkbuster was originally written by Anonymous Coders and Junkbusters Corporation
(http://www.junkbusters.com), and was released as free open-source software under the GNU GPL.
Stefan Waldherr (http://www.waldherr.org/junkbuster/) made many improvements, and started the
SourceForge project Privoxy (http://sourceforge.net/projects/ijbswa/) to rekindle development. There are
now several active developers contributing. The last stable release of Junkbuster was v2.0.2, which has
now grown whiskers ;-).

See also
Other references and sites of interest to Privoxy users:

http://www.privoxy.org/, The Privoxy Home page.
http://sourceforge.net/projects/ijbswa, the Project Page for Privoxy on Sourceforge (http://sourceforge.net).
http://p.p/, access Privoxy from your browser. Alternately, http://config.privoxy.org may work in some situations where the first does not.
http://p.p/, and select “actions file feedback system” (javascript:w=Math.floor(screen.width/2);h=Math.floor(screen.height*0.9);void(window.open(’http://www.privoxy.org/actions’,’Feedback’,’screenx=’+w+’,width=’+w+’,height=’+h+’,scrollbars=yes,toolbar=no,location=no,directories=no,status=no,menubar=no,copyhistory=no’).focus());) to submit “misses” to the developers.
http://www.junkbusters.com/ht/en/cookies.html
http://www.waldherr.org/junkbuster/
http://privacy.net/analyze/
http://www.squid-cache.org/

41

