From: Fabian Keil
Date: Fri, 26 Feb 2021 09:35:36 +0000 (+0100)
Subject: Remove obsolete pcre code
X-Git-Tag: v_3_0_33~99
X-Git-Url: http://www.privoxy.org/gitweb/?a=commitdiff_plain;h=878f6fc9589394ee23f5e0e9bd549f88532a3978;p=privoxy.git
Remove obsolete pcre code
It was already detached from the build since d7c2657e0b.
---
diff --git a/pcre/.gitignore b/pcre/.gitignore
deleted file mode 100644
index a504754c..00000000
--- a/pcre/.gitignore
+++ /dev/null
@@ -1,6 +0,0 @@
-chartables.c
-dftables
-vc_dftables.plg
-vc_dftables
-vc_dftables_dbg
-dftables.exe
diff --git a/pcre/Makefile.in b/pcre/Makefile.in
deleted file mode 100644
index 94edf499..00000000
--- a/pcre/Makefile.in
+++ /dev/null
@@ -1,219 +0,0 @@
-
-# Makefile.in for PCRE (Perl-Compatible Regular Expression) library.
-
-#---------------------------------------------------------------------------#
-# To build mingw32 DLL uncomment the next two lines. This addition for #
-# mingw32 was contributed by . I (Philip #
-# Hazel) don't know anything about it! There are some additional targets at #
-# the bottom of this Makefile. #
-#---------------------------------------------------------------------------#
-#
-# include dll.mk
-# DLL_LDFLAGS=-s
-
-
-#---------------------------------------------------------------------------#
-# The next few lines are modified by "configure" to insert data that it is #
-# given in its arguments, or which it finds out for itself. #
-#---------------------------------------------------------------------------#
-
-# BINDIR is the directory in which the pcregrep command is installed.
-# INCDIR is the directory in which the public header file pcre.h is installed.
-# LIBDIR is the directory in which the libraries are installed.
-# MANDIR is the directory in which the man pages are installed.
-# The pcretest program, as it is a test program, does not get installed
-# anywhere.
-
-prefix = @prefix@
-exec_prefix = @exec_prefix@
-
-BINDIR = @bindir@
-LIBDIR = @libdir@
-INCDIR = @includedir@
-MANDIR = @mandir@
-
-CC = @CC@
-CFLAGS = @CFLAGS@
-RANLIB = @RANLIB@
-UTF8 = @UTF8@
-
-# LIBTOOL defaults to "./libtool", which enables the building of shared
-# libraries. If "configure" is called with --disable-shared-libraries, LIBTOOL
-# is set to "", which stops shared libraries from being built, and LIBSUFFIX
-# is set to "a" instead of "la", which causes the shared libraries not to be
-# installed.
-
-LIBTOOL = @LIBTOOL@
-LIBSUFFIX = @LIBSUFFIX@
-
-# These are the version numbers for the shared libraries
-
-PCRELIBVERSION = @PCRE_LIB_VERSION@
-PCREPOSIXLIBVERSION = @PCRE_POSIXLIB_VERSION@
-
-
-#---------------------------------------------------------------------------#
-# A copy of install-sh is in this distribution and is used by default. #
-#---------------------------------------------------------------------------#
-
-INSTALL = ./install-sh -c
-INSTALL_DATA = ${INSTALL} -m 644
-
-
-#---------------------------------------------------------------------------#
-# For almost all systems, the command to create a library is "ar cq", but #
-# there is at least one where it is different, so this command must be #
-# configurable. However, I haven't got round to learning how to make #
-# "configure" find this out for itself. It is necessary to use a command #
-# such as "make AR='ar -rc'" if you need to vary this. The setting of AR is #
-# *not* passed over to ./ltconfig, because it does its own setting up. #
-#---------------------------------------------------------------------------#
-
-AR = ar cq
-
-
-##############################################################################
-
-
-OBJ = maketables.o get.o study.o pcre.o
-LOBJ = maketables.lo get.lo study.lo pcre.lo
-
-all: libtool libpcre.$(LIBSUFFIX) libpcreposix.$(LIBSUFFIX) pcretest pcregrep
-
-libtool: config.guess config.sub ltconfig ltmain.sh
- @if test "$(LIBTOOL)" = "./libtool"; then \
- echo '--- Building libtool ---'; \
- CC=$(CC) CFLAGS='$(CFLAGS)' RANLIB='$(RANLIB)' ./ltconfig ./ltmain.sh; \
- echo '--- Built libtool ---'; fi
-
-pcregrep: libpcre.$(LIBSUFFIX) pcregrep.o
- @echo ' '
- @echo '--- Building pcregrep utility'
- @echo ' '
- $(LIBTOOL) $(CC) $(CFLAGS) -o pcregrep pcregrep.o libpcre.$(LIBSUFFIX)
-
-pcretest: libpcre.$(LIBSUFFIX) libpcreposix.$(LIBSUFFIX) pcretest.o
- @echo ' '
- @echo '--- Building pcretest testing program'
- @echo ' '
- $(LIBTOOL) $(PURIFY) $(CC) $(CFLAGS) -o pcretest pcretest.o \
- libpcre.$(LIBSUFFIX) libpcreposix.$(LIBSUFFIX)
-
-libpcre.a: $(OBJ)
- @echo ' '
- @echo '--- Building static library: libpcre'
- @echo ' '
- -rm -f libpcre.a
- $(AR) libpcre.a $(OBJ)
- $(RANLIB) libpcre.a
-
-libpcre.la: $(OBJ)
- @echo ' '
- @echo '--- Building shared library: libpcre'
- @echo ' '
- -rm -f libpcre.la
- ./libtool $(CC) -version-info '$(PCRELIBVERSION)' -o libpcre.la -rpath $(LIBDIR) $(LOBJ)
-
-libpcreposix.a: pcreposix.o
- @echo ' '
- @echo '--- Building static library: libpcreposix'
- @echo ' '
- -rm -f libpcreposix.a
- $(AR) libpcreposix.a pcreposix.o
- $(RANLIB) libpcreposix.a
-
-libpcreposix.la: pcreposix.o
- @echo ' '
- @echo '--- Building shared library: libpcreposix'
- @echo ' '
- -rm -f libpcreposix.la
- ./libtool $(CC) -version-info '$(PCREPOSIXLIBVERSION)' -o libpcreposix.la -rpath $(LIBDIR) pcreposix.lo
-
-pcre.o: chartables.c pcre.c pcre.h internal.h config.h Makefile
- $(LIBTOOL) $(CC) -c $(CFLAGS) $(UTF8) pcre.c
-
-pcreposix.o: pcreposix.c pcreposix.h internal.h pcre.h config.h Makefile
- $(LIBTOOL) $(CC) -c $(CFLAGS) pcreposix.c
-
-maketables.o: maketables.c pcre.h internal.h config.h Makefile
- $(LIBTOOL) $(CC) -c $(CFLAGS) maketables.c
-
-get.o: get.c pcre.h internal.h config.h Makefile
- $(LIBTOOL) $(CC) -c $(CFLAGS) get.c
-
-study.o: study.c pcre.h internal.h config.h Makefile
- $(LIBTOOL) $(CC) -c $(CFLAGS) $(UTF8) study.c
-
-pcretest.o: pcretest.c pcre.h config.h Makefile
- $(CC) -c $(CFLAGS) $(UTF8) pcretest.c
-
-pcregrep.o: pcregrep.c pcre.h Makefile config.h
- $(CC) -c $(CFLAGS) $(UTF8) pcregrep.c
-
-# An auxiliary program makes the default character table source
-
-chartables.c: dftables
- ./dftables >chartables.c
-
-dftables: dftables.c maketables.c pcre.h internal.h config.h Makefile
- $(CC) -o dftables $(CFLAGS) dftables.c
-
-install: all
- $(LIBTOOL) $(INSTALL_DATA) libpcre.$(LIBSUFFIX) $(DESTDIR)/$(LIBDIR)/libpcre.$(LIBSUFFIX)
- $(LIBTOOL) $(INSTALL_DATA) libpcreposix.$(LIBSUFFIX) $(DESTDIR)/$(LIBDIR)/libpcreposix.$(LIBSUFFIX)
- $(INSTALL_DATA) pcre.h $(DESTDIR)/$(INCDIR)/pcre.h
- $(INSTALL_DATA) pcreposix.h $(DESTDIR)/$(INCDIR)/pcreposix.h
- $(INSTALL_DATA) doc/pcre.3 $(DESTDIR)/$(MANDIR)/man3/pcre.3
- $(INSTALL_DATA) doc/pcreposix.3 $(DESTDIR)/$(MANDIR)/man3/pcreposix.3
- $(INSTALL_DATA) doc/pcregrep.1 $(DESTDIR)/$(MANDIR)/man1/pcregrep.1
- @if test "$(LIBTOOL)" = "./libtool"; then \
- echo ' '; \
- echo '--- Rebuilding pcregrep to use installed shared library ---'; \
- echo $(CC) $(CFLAGS) -o pcregrep pcregrep.o -L$(DESTDIR)/$(LIBDIR) -lpcre; \
- $(CC) $(CFLAGS) -o pcregrep pcregrep.o -L$(DESTDIR)/$(LIBDIR) -lpcre; \
- echo '--- Rebuilding pcretest to use installed shared library ---'; \
- echo $(CC) $(CFLAGS) -o pcretest pcretest.o -L$(DESTDIR)/$(LIBDIR) -lpcre -lpcreposix; \
- $(CC) $(CFLAGS) -o pcretest pcretest.o -L$(DESTDIR)/$(LIBDIR) -lpcre -lpcreposix; \
- fi
- $(INSTALL) pcregrep $(DESTDIR)/$(BINDIR)/pcregrep
- $(INSTALL) pcre-config $(DESTDIR)/$(BINDIR)/pcre-config
-
-# We deliberately omit dftables and chartables.c from 'make clean'; once made
-# chartables.c shouldn't change, and if people have edited the tables by hand,
-# you don't want to throw them away.
-
-clean:; -rm -rf *.o *.lo *.a *.la .libs pcretest pcregrep testtry
-
-# But "make distclean" should get back to a virgin distribution
-
-distclean: clean
- -rm -f chartables.c libtool pcre-config pcre.h \
- Makefile config.h config.status config.log config.cache
-
-check: runtest
-
-test: runtest
-
-runtest: all
- ./RunTest
-
-######## MINGW32 ############### MINGW32 ############### MINGW32 #############
-
-# This addition for mingw32 was contributed by Paul Sokolovsky
-# . I (PH) don't know anything about it!
-
-dll: _dll libpcre.dll.a pcregrep_d pcretest_d
-
-_dll:
- $(MAKE) CFLAGS=-DSTATIC pcre.dll
-
-pcre.dll: $(OBJ) pcreposix.o pcre.def
-libpcre.dll.a: pcre.def
-
-pcregrep_d: libpcre.dll.a pcregrep.o
- $(CC) $(CFLAGS) -L. -o pcregrep pcregrep.o -lpcre.dll
-
-pcretest_d: libpcre.dll.a pcretest.o
- $(PURIFY) $(CC) $(CFLAGS) -L. -o pcretest pcretest.o -lpcre.dll
-
-# End
diff --git a/pcre/RunTest.in b/pcre/RunTest.in
deleted file mode 100644
index 6e4eb085..00000000
--- a/pcre/RunTest.in
+++ /dev/null
@@ -1,148 +0,0 @@
-#! /bin/sh
-
-# This file is generated by configure from RunTest.in. Make any changes
-# to that file.
-
-# Run PCRE tests
-
-cf=diff
-
-# Select which tests to run; if no selection, run all
-
-do1=no
-do2=no
-do3=no
-do4=no
-do5=no
-do6=no
-
-while [ $# -gt 0 ] ; do
- case $1 in
- 1) do1=yes;;
- 2) do2=yes;;
- 3) do3=yes;;
- 4) do4=yes;;
- 5) do5=yes;;
- 6) do6=yes;;
- *) echo "Unknown test number $1"; exit 1;;
- esac
- shift
-done
-
-if [ "@UTF8@" = "" ] ; then
- if [ $do5 = yes ] ; then
- echo "Can't run test 5 because UFT8 support is not configured"
- exit 1
- fi
- if [ $do6 = yes ] ; then
- echo "Can't run test 6 because UFT8 support is not configured"
- exit 1
- fi
-fi
-
-if [ $do1 = no -a $do2 = no -a $do3 = no -a $do4 = no -a\
- $do5 = no -a $do6 = no ] ; then
- do1=yes
- do2=yes
- do3=yes
- do4=yes
- if [ "@UTF8@" != "" ] ; then do5=yes; fi
- if [ "@UTF8@" != "" ] ; then do6=yes; fi
-fi
-
-# Primary test, Perl-compatible
-
-if [ $do1 = yes ] ; then
- echo "Testing main functionality (Perl compatible)"
- ./pcretest testdata/testinput1 testtry
- if [ $? = 0 ] ; then
- $cf testtry testdata/testoutput1
- if [ $? != 0 ] ; then exit 1; fi
- else exit 1
- fi
-fi
-
-# PCRE tests that are not Perl-compatible - API & error tests, mostly
-
-if [ $do2 = yes ] ; then
- echo "Testing API and error handling (not Perl compatible)"
- ./pcretest -i testdata/testinput2 testtry
- if [ $? = 0 ] ; then
- $cf testtry testdata/testoutput2
- if [ $? != 0 ] ; then exit 1; fi
- else exit 1
- fi
-fi
-
-# Additional Perl-compatible tests for Perl 5.005's new features
-
-if [ $do3 = yes ] ; then
- echo "Testing Perl 5.005 features (Perl 5.005 compatible)"
- ./pcretest testdata/testinput3 testtry
- if [ $? = 0 ] ; then
- $cf testtry testdata/testoutput3
- if [ $? != 0 ] ; then exit 1; fi
- else exit 1
- fi
-fi
-
-if [ $do1 = yes -a $do2 = yes -a $do3 = yes ] ; then
- echo " "
- echo "The three main tests all ran OK"
- echo " "
-fi
-
-# Locale-specific tests, provided the "fr" locale is available
-
-if [ $do4 = yes ] ; then
- locale -a | grep '^fr$' >/dev/null
- if [ $? -eq 0 ] ; then
- echo "Testing locale-specific features (using 'fr' locale)"
- ./pcretest testdata/testinput4 testtry
- if [ $? = 0 ] ; then
- $cf testtry testdata/testoutput4
- if [ $? != 0 ] ; then
- echo " "
- echo "Locale test did not run entirely successfully."
- echo "This usually means that there is a problem with the locale"
- echo "settings rather than a bug in PCRE."
- else
- echo "Locale test ran OK"
- fi
- echo " "
- else exit 1
- fi
- else
- echo "Cannot test locale-specific features - 'fr' locale not found,"
- echo "or the \"locale\" command is not available to check for it."
- echo " "
- fi
-fi
-
-# Additional tests for UTF8 support
-
-if [ $do5 = yes ] ; then
- echo "Testing experimental, incomplete UTF8 support (Perl compatible)"
- ./pcretest testdata/testinput5 testtry
- if [ $? = 0 ] ; then
- $cf testtry testdata/testoutput5
- if [ $? != 0 ] ; then exit 1; fi
- else exit 1
- fi
- echo "UTF8 test ran OK"
- echo " "
-fi
-
-if [ $do6 = yes ] ; then
- echo "Testing API and internals for UTF8 support (not Perl compatible)"
- ./pcretest testdata/testinput6 testtry
- if [ $? = 0 ] ; then
- $cf testtry testdata/testoutput6
- if [ $? != 0 ] ; then exit 1; fi
- else exit 1
- fi
- echo "UTF8 internals test ran OK"
- echo " "
-fi
-
-# End
diff --git a/pcre/config.guess b/pcre/config.guess
deleted file mode 100644
index e1b58717..00000000
--- a/pcre/config.guess
+++ /dev/null
@@ -1,1121 +0,0 @@
-#! /bin/sh
-# Attempt to guess a canonical system name.
-# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999
-# Free Software Foundation, Inc.
-#
-# This file is free software; you can redistribute it and/or modify it
-# under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful, but
-# WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-# General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-#
-# As a special exception to the GNU General Public License, if you
-# distribute this file as part of a program that contains a
-# configuration script generated by Autoconf, you may include it under
-# the same distribution terms that you use for the rest of that program.
-
-# Written by Per Bothner .
-# The master version of this file is at the FSF in /home/gd/gnu/lib.
-# Please send patches to .
-#
-# This script attempts to guess a canonical system name similar to
-# config.sub. If it succeeds, it prints the system name on stdout, and
-# exits with 0. Otherwise, it exits with 1.
-#
-# The plan is that this can be called by configure scripts if you
-# don't specify an explicit system type (host/target name).
-#
-# Only a few systems have been added to this list; please add others
-# (but try to keep the structure clean).
-#
-
-# Use $HOST_CC if defined. $CC may point to a cross-compiler
-if test x"$CC_FOR_BUILD" = x; then
- if test x"$HOST_CC" != x; then
- CC_FOR_BUILD="$HOST_CC"
- else
- if test x"$CC" != x; then
- CC_FOR_BUILD="$CC"
- else
- CC_FOR_BUILD=cc
- fi
- fi
-fi
-
-
-# This is needed to find uname on a Pyramid OSx when run in the BSD universe.
-# (ghazi@noc.rutgers.edu 8/24/94.)
-if (test -f /.attbin/uname) >/dev/null 2>&1 ; then
- PATH=$PATH:/.attbin ; export PATH
-fi
-
-UNAME_MACHINE=`(uname -m) 2>/dev/null` || UNAME_MACHINE=unknown
-UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown
-UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown
-UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown
-
-dummy=dummy-$$
-trap 'rm -f $dummy.c $dummy.o $dummy; exit 1' 1 2 15
-
-# Note: order is significant - the case branches are not exclusive.
-
-case "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" in
- alpha:OSF1:*:*)
- if test $UNAME_RELEASE = "V4.0"; then
- UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $3}'`
- fi
- # A Vn.n version is a released version.
- # A Tn.n version is a released field test version.
- # A Xn.n version is an unreleased experimental baselevel.
- # 1.2 uses "1.2" for uname -r.
- cat <$dummy.s
- .globl main
- .ent main
-main:
- .frame \$30,0,\$26,0
- .prologue 0
- .long 0x47e03d80 # implver $0
- lda \$2,259
- .long 0x47e20c21 # amask $2,$1
- srl \$1,8,\$2
- sll \$2,2,\$2
- sll \$0,3,\$0
- addl \$1,\$0,\$0
- addl \$2,\$0,\$0
- ret \$31,(\$26),1
- .end main
-EOF
- $CC_FOR_BUILD $dummy.s -o $dummy 2>/dev/null
- if test "$?" = 0 ; then
- ./$dummy
- case "$?" in
- 7)
- UNAME_MACHINE="alpha"
- ;;
- 15)
- UNAME_MACHINE="alphaev5"
- ;;
- 14)
- UNAME_MACHINE="alphaev56"
- ;;
- 10)
- UNAME_MACHINE="alphapca56"
- ;;
- 16)
- UNAME_MACHINE="alphaev6"
- ;;
- esac
- fi
- rm -f $dummy.s $dummy
- echo ${UNAME_MACHINE}-dec-osf`echo ${UNAME_RELEASE} | sed -e 's/^[VTX]//' | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'`
- exit 0 ;;
- Alpha\ *:Windows_NT*:*)
- # How do we know it's Interix rather than the generic POSIX subsystem?
- # Should we change UNAME_MACHINE based on the output of uname instead
- # of the specific Alpha model?
- echo alpha-pc-interix
- exit 0 ;;
- 21064:Windows_NT:50:3)
- echo alpha-dec-winnt3.5
- exit 0 ;;
- Amiga*:UNIX_System_V:4.0:*)
- echo m68k-cbm-sysv4
- exit 0;;
- amiga:NetBSD:*:*)
- echo m68k-cbm-netbsd${UNAME_RELEASE}
- exit 0 ;;
- amiga:OpenBSD:*:*)
- echo m68k-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- *:[Aa]miga[Oo][Ss]:*:*)
- echo ${UNAME_MACHINE}-unknown-amigaos
- exit 0 ;;
- arc64:OpenBSD:*:*)
- echo mips64el-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- arc:OpenBSD:*:*)
- echo mipsel-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- hkmips:OpenBSD:*:*)
- echo mips-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- pmax:OpenBSD:*:*)
- echo mipsel-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- sgi:OpenBSD:*:*)
- echo mips-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- wgrisc:OpenBSD:*:*)
- echo mipsel-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- *:OS/390:*:*)
- echo i370-ibm-openedition
- exit 0 ;;
- arm:RISC*:1.[012]*:*|arm:riscix:1.[012]*:*)
- echo arm-acorn-riscix${UNAME_RELEASE}
- exit 0;;
- arm32:NetBSD:*:*)
- echo arm-unknown-netbsd`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'`
- exit 0 ;;
- SR2?01:HI-UX/MPP:*:*)
- echo hppa1.1-hitachi-hiuxmpp
- exit 0;;
- Pyramid*:OSx*:*:* | MIS*:OSx*:*:* | MIS*:SMP_DC-OSx*:*:*)
- # akee@wpdis03.wpafb.af.mil (Earle F. Ake) contributed MIS and NILE.
- if test "`(/bin/universe) 2>/dev/null`" = att ; then
- echo pyramid-pyramid-sysv3
- else
- echo pyramid-pyramid-bsd
- fi
- exit 0 ;;
- NILE*:*:*:dcosx)
- echo pyramid-pyramid-svr4
- exit 0 ;;
- sun4H:SunOS:5.*:*)
- echo sparc-hal-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
- exit 0 ;;
- sun4*:SunOS:5.*:* | tadpole*:SunOS:5.*:*)
- echo sparc-sun-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
- exit 0 ;;
- i86pc:SunOS:5.*:*)
- echo i386-pc-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
- exit 0 ;;
- sun4*:SunOS:6*:*)
- # According to config.sub, this is the proper way to canonicalize
- # SunOS6. Hard to guess exactly what SunOS6 will be like, but
- # it's likely to be more like Solaris than SunOS4.
- echo sparc-sun-solaris3`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
- exit 0 ;;
- sun4*:SunOS:*:*)
- case "`/usr/bin/arch -k`" in
- Series*|S4*)
- UNAME_RELEASE=`uname -v`
- ;;
- esac
- # Japanese Language versions have a version number like `4.1.3-JL'.
- echo sparc-sun-sunos`echo ${UNAME_RELEASE}|sed -e 's/-/_/'`
- exit 0 ;;
- sun3*:SunOS:*:*)
- echo m68k-sun-sunos${UNAME_RELEASE}
- exit 0 ;;
- sun*:*:4.2BSD:*)
- UNAME_RELEASE=`(head -1 /etc/motd | awk '{print substr($5,1,3)}') 2>/dev/null`
- test "x${UNAME_RELEASE}" = "x" && UNAME_RELEASE=3
- case "`/bin/arch`" in
- sun3)
- echo m68k-sun-sunos${UNAME_RELEASE}
- ;;
- sun4)
- echo sparc-sun-sunos${UNAME_RELEASE}
- ;;
- esac
- exit 0 ;;
- aushp:SunOS:*:*)
- echo sparc-auspex-sunos${UNAME_RELEASE}
- exit 0 ;;
- atari*:NetBSD:*:*)
- echo m68k-atari-netbsd${UNAME_RELEASE}
- exit 0 ;;
- atari*:OpenBSD:*:*)
- echo m68k-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- # The situation for MiNT is a little confusing. The machine name
- # can be virtually everything (everything which is not
- # "atarist" or "atariste" at least should have a processor
- # > m68000). The system name ranges from "MiNT" over "FreeMiNT"
- # to the lowercase version "mint" (or "freemint"). Finally
- # the system name "TOS" denotes a system which is actually not
- # MiNT. But MiNT is downward compatible to TOS, so this should
- # be no problem.
- atarist[e]:*MiNT:*:* | atarist[e]:*mint:*:* | atarist[e]:*TOS:*:*)
- echo m68k-atari-mint${UNAME_RELEASE}
- exit 0 ;;
- atari*:*MiNT:*:* | atari*:*mint:*:* | atarist[e]:*TOS:*:*)
- echo m68k-atari-mint${UNAME_RELEASE}
- exit 0 ;;
- *falcon*:*MiNT:*:* | *falcon*:*mint:*:* | *falcon*:*TOS:*:*)
- echo m68k-atari-mint${UNAME_RELEASE}
- exit 0 ;;
- milan*:*MiNT:*:* | milan*:*mint:*:* | *milan*:*TOS:*:*)
- echo m68k-milan-mint${UNAME_RELEASE}
- exit 0 ;;
- hades*:*MiNT:*:* | hades*:*mint:*:* | *hades*:*TOS:*:*)
- echo m68k-hades-mint${UNAME_RELEASE}
- exit 0 ;;
- *:*MiNT:*:* | *:*mint:*:* | *:*TOS:*:*)
- echo m68k-unknown-mint${UNAME_RELEASE}
- exit 0 ;;
- sun3*:NetBSD:*:*)
- echo m68k-sun-netbsd${UNAME_RELEASE}
- exit 0 ;;
- sun3*:OpenBSD:*:*)
- echo m68k-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- mac68k:NetBSD:*:*)
- echo m68k-apple-netbsd${UNAME_RELEASE}
- exit 0 ;;
- mac68k:OpenBSD:*:*)
- echo m68k-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- mvme68k:OpenBSD:*:*)
- echo m68k-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- mvme88k:OpenBSD:*:*)
- echo m88k-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- powerpc:machten:*:*)
- echo powerpc-apple-machten${UNAME_RELEASE}
- exit 0 ;;
- macppc:NetBSD:*:*)
- echo powerpc-apple-netbsd${UNAME_RELEASE}
- exit 0 ;;
- RISC*:Mach:*:*)
- echo mips-dec-mach_bsd4.3
- exit 0 ;;
- RISC*:ULTRIX:*:*)
- echo mips-dec-ultrix${UNAME_RELEASE}
- exit 0 ;;
- VAX*:ULTRIX*:*:*)
- echo vax-dec-ultrix${UNAME_RELEASE}
- exit 0 ;;
- 2020:CLIX:*:* | 2430:CLIX:*:*)
- echo clipper-intergraph-clix${UNAME_RELEASE}
- exit 0 ;;
- mips:*:*:UMIPS | mips:*:*:RISCos)
- sed 's/^ //' << EOF >$dummy.c
-#ifdef __cplusplus
- int main (int argc, char *argv[]) {
-#else
- int main (argc, argv) int argc; char *argv[]; {
-#endif
- #if defined (host_mips) && defined (MIPSEB)
- #if defined (SYSTYPE_SYSV)
- printf ("mips-mips-riscos%ssysv\n", argv[1]); exit (0);
- #endif
- #if defined (SYSTYPE_SVR4)
- printf ("mips-mips-riscos%ssvr4\n", argv[1]); exit (0);
- #endif
- #if defined (SYSTYPE_BSD43) || defined(SYSTYPE_BSD)
- printf ("mips-mips-riscos%sbsd\n", argv[1]); exit (0);
- #endif
- #endif
- exit (-1);
- }
-EOF
- $CC_FOR_BUILD $dummy.c -o $dummy \
- && ./$dummy `echo "${UNAME_RELEASE}" | sed -n 's/\([0-9]*\).*/\1/p'` \
- && rm $dummy.c $dummy && exit 0
- rm -f $dummy.c $dummy
- echo mips-mips-riscos${UNAME_RELEASE}
- exit 0 ;;
- Night_Hawk:Power_UNIX:*:*)
- echo powerpc-harris-powerunix
- exit 0 ;;
- m88k:CX/UX:7*:*)
- echo m88k-harris-cxux7
- exit 0 ;;
- m88k:*:4*:R4*)
- echo m88k-motorola-sysv4
- exit 0 ;;
- m88k:*:3*:R3*)
- echo m88k-motorola-sysv3
- exit 0 ;;
- AViiON:dgux:*:*)
- # DG/UX returns AViiON for all architectures
- UNAME_PROCESSOR=`/usr/bin/uname -p`
- if [ $UNAME_PROCESSOR = mc88100 ] || [ $UNAME_PROCESSOR = mc88110]
- then
- if [ ${TARGET_BINARY_INTERFACE}x = m88kdguxelfx ] || \
- [ ${TARGET_BINARY_INTERFACE}x = x ]
- then
- echo m88k-dg-dgux${UNAME_RELEASE}
- else
- echo m88k-dg-dguxbcs${UNAME_RELEASE}
- fi
- else
- echo i586-dg-dgux${UNAME_RELEASE}
- fi
- exit 0 ;;
- M88*:DolphinOS:*:*) # DolphinOS (SVR3)
- echo m88k-dolphin-sysv3
- exit 0 ;;
- M88*:*:R3*:*)
- # Delta 88k system running SVR3
- echo m88k-motorola-sysv3
- exit 0 ;;
- XD88*:*:*:*) # Tektronix XD88 system running UTekV (SVR3)
- echo m88k-tektronix-sysv3
- exit 0 ;;
- Tek43[0-9][0-9]:UTek:*:*) # Tektronix 4300 system running UTek (BSD)
- echo m68k-tektronix-bsd
- exit 0 ;;
- *:IRIX*:*:*)
- echo mips-sgi-irix`echo ${UNAME_RELEASE}|sed -e 's/-/_/g'`
- exit 0 ;;
- ????????:AIX?:[12].1:2) # AIX 2.2.1 or AIX 2.1.1 is RT/PC AIX.
- echo romp-ibm-aix # uname -m gives an 8 hex-code CPU id
- exit 0 ;; # Note that: echo "'`uname -s`'" gives 'AIX '
- i?86:AIX:*:*)
- echo i386-ibm-aix
- exit 0 ;;
- *:AIX:2:3)
- if grep bos325 /usr/include/stdio.h >/dev/null 2>&1; then
- sed 's/^ //' << EOF >$dummy.c
- #include
-
- main()
- {
- if (!__power_pc())
- exit(1);
- puts("powerpc-ibm-aix3.2.5");
- exit(0);
- }
-EOF
- $CC_FOR_BUILD $dummy.c -o $dummy && ./$dummy && rm $dummy.c $dummy && exit 0
- rm -f $dummy.c $dummy
- echo rs6000-ibm-aix3.2.5
- elif grep bos324 /usr/include/stdio.h >/dev/null 2>&1; then
- echo rs6000-ibm-aix3.2.4
- else
- echo rs6000-ibm-aix3.2
- fi
- exit 0 ;;
- *:AIX:*:4)
- IBM_CPU_ID=`/usr/sbin/lsdev -C -c processor -S available | head -1 | awk '{ print $1 }'`
- if /usr/sbin/lsattr -EHl ${IBM_CPU_ID} | grep POWER >/dev/null 2>&1; then
- IBM_ARCH=rs6000
- else
- IBM_ARCH=powerpc
- fi
- if [ -x /usr/bin/oslevel ] ; then
- IBM_REV=`/usr/bin/oslevel`
- else
- IBM_REV=4.${UNAME_RELEASE}
- fi
- echo ${IBM_ARCH}-ibm-aix${IBM_REV}
- exit 0 ;;
- *:AIX:*:*)
- echo rs6000-ibm-aix
- exit 0 ;;
- ibmrt:4.4BSD:*|romp-ibm:BSD:*)
- echo romp-ibm-bsd4.4
- exit 0 ;;
- ibmrt:*BSD:*|romp-ibm:BSD:*) # covers RT/PC NetBSD and
- echo romp-ibm-bsd${UNAME_RELEASE} # 4.3 with uname added to
- exit 0 ;; # report: romp-ibm BSD 4.3
- *:BOSX:*:*)
- echo rs6000-bull-bosx
- exit 0 ;;
- DPX/2?00:B.O.S.:*:*)
- echo m68k-bull-sysv3
- exit 0 ;;
- 9000/[34]??:4.3bsd:1.*:*)
- echo m68k-hp-bsd
- exit 0 ;;
- hp300:4.4BSD:*:* | 9000/[34]??:4.3bsd:2.*:*)
- echo m68k-hp-bsd4.4
- exit 0 ;;
- 9000/[34678]??:HP-UX:*:*)
- case "${UNAME_MACHINE}" in
- 9000/31? ) HP_ARCH=m68000 ;;
- 9000/[34]?? ) HP_ARCH=m68k ;;
- 9000/[678][0-9][0-9])
- sed 's/^ //' << EOF >$dummy.c
- #include
- #include
-
- int main ()
- {
- #if defined(_SC_KERNEL_BITS)
- long bits = sysconf(_SC_KERNEL_BITS);
- #endif
- long cpu = sysconf (_SC_CPU_VERSION);
-
- switch (cpu)
- {
- case CPU_PA_RISC1_0: puts ("hppa1.0"); break;
- case CPU_PA_RISC1_1: puts ("hppa1.1"); break;
- case CPU_PA_RISC2_0:
- #if defined(_SC_KERNEL_BITS)
- switch (bits)
- {
- case 64: puts ("hppa2.0w"); break;
- case 32: puts ("hppa2.0n"); break;
- default: puts ("hppa2.0"); break;
- } break;
- #else /* !defined(_SC_KERNEL_BITS) */
- puts ("hppa2.0"); break;
- #endif
- default: puts ("hppa1.0"); break;
- }
- exit (0);
- }
-EOF
- (CCOPTS= $CC_FOR_BUILD $dummy.c -o $dummy 2>/dev/null ) && HP_ARCH=`./$dummy`
- rm -f $dummy.c $dummy
- esac
- HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'`
- echo ${HP_ARCH}-hp-hpux${HPUX_REV}
- exit 0 ;;
- 3050*:HI-UX:*:*)
- sed 's/^ //' << EOF >$dummy.c
- #include
- int
- main ()
- {
- long cpu = sysconf (_SC_CPU_VERSION);
- /* The order matters, because CPU_IS_HP_MC68K erroneously returns
- true for CPU_PA_RISC1_0. CPU_IS_PA_RISC returns correct
- results, however. */
- if (CPU_IS_PA_RISC (cpu))
- {
- switch (cpu)
- {
- case CPU_PA_RISC1_0: puts ("hppa1.0-hitachi-hiuxwe2"); break;
- case CPU_PA_RISC1_1: puts ("hppa1.1-hitachi-hiuxwe2"); break;
- case CPU_PA_RISC2_0: puts ("hppa2.0-hitachi-hiuxwe2"); break;
- default: puts ("hppa-hitachi-hiuxwe2"); break;
- }
- }
- else if (CPU_IS_HP_MC68K (cpu))
- puts ("m68k-hitachi-hiuxwe2");
- else puts ("unknown-hitachi-hiuxwe2");
- exit (0);
- }
-EOF
- $CC_FOR_BUILD $dummy.c -o $dummy && ./$dummy && rm $dummy.c $dummy && exit 0
- rm -f $dummy.c $dummy
- echo unknown-hitachi-hiuxwe2
- exit 0 ;;
- 9000/7??:4.3bsd:*:* | 9000/8?[79]:4.3bsd:*:* )
- echo hppa1.1-hp-bsd
- exit 0 ;;
- 9000/8??:4.3bsd:*:*)
- echo hppa1.0-hp-bsd
- exit 0 ;;
- *9??*:MPE/iX:*:*)
- echo hppa1.0-hp-mpeix
- exit 0 ;;
- hp7??:OSF1:*:* | hp8?[79]:OSF1:*:* )
- echo hppa1.1-hp-osf
- exit 0 ;;
- hp8??:OSF1:*:*)
- echo hppa1.0-hp-osf
- exit 0 ;;
- i?86:OSF1:*:*)
- if [ -x /usr/sbin/sysversion ] ; then
- echo ${UNAME_MACHINE}-unknown-osf1mk
- else
- echo ${UNAME_MACHINE}-unknown-osf1
- fi
- exit 0 ;;
- parisc*:Lites*:*:*)
- echo hppa1.1-hp-lites
- exit 0 ;;
- hppa*:OpenBSD:*:*)
- echo hppa-unknown-openbsd
- exit 0 ;;
- C1*:ConvexOS:*:* | convex:ConvexOS:C1*:*)
- echo c1-convex-bsd
- exit 0 ;;
- C2*:ConvexOS:*:* | convex:ConvexOS:C2*:*)
- if getsysinfo -f scalar_acc
- then echo c32-convex-bsd
- else echo c2-convex-bsd
- fi
- exit 0 ;;
- C34*:ConvexOS:*:* | convex:ConvexOS:C34*:*)
- echo c34-convex-bsd
- exit 0 ;;
- C38*:ConvexOS:*:* | convex:ConvexOS:C38*:*)
- echo c38-convex-bsd
- exit 0 ;;
- C4*:ConvexOS:*:* | convex:ConvexOS:C4*:*)
- echo c4-convex-bsd
- exit 0 ;;
- CRAY*X-MP:*:*:*)
- echo xmp-cray-unicos
- exit 0 ;;
- CRAY*Y-MP:*:*:*)
- echo ymp-cray-unicos${UNAME_RELEASE}
- exit 0 ;;
- CRAY*[A-Z]90:*:*:*)
- echo ${UNAME_MACHINE}-cray-unicos${UNAME_RELEASE} \
- | sed -e 's/CRAY.*\([A-Z]90\)/\1/' \
- -e y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/
- exit 0 ;;
- CRAY*TS:*:*:*)
- echo t90-cray-unicos${UNAME_RELEASE}
- exit 0 ;;
- CRAY*T3E:*:*:*)
- echo alpha-cray-unicosmk${UNAME_RELEASE}
- exit 0 ;;
- CRAY-2:*:*:*)
- echo cray2-cray-unicos
- exit 0 ;;
- F300:UNIX_System_V:*:*)
- FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'`
- FUJITSU_REL=`echo ${UNAME_RELEASE} | sed -e 's/ /_/'`
- echo "f300-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}"
- exit 0 ;;
- F301:UNIX_System_V:*:*)
- echo f301-fujitsu-uxpv`echo $UNAME_RELEASE | sed 's/ .*//'`
- exit 0 ;;
- hp3[0-9][05]:NetBSD:*:*)
- echo m68k-hp-netbsd${UNAME_RELEASE}
- exit 0 ;;
- hp300:OpenBSD:*:*)
- echo m68k-unknown-openbsd${UNAME_RELEASE}
- exit 0 ;;
- i?86:BSD/386:*:* | i?86:BSD/OS:*:*)
- echo ${UNAME_MACHINE}-pc-bsdi${UNAME_RELEASE}
- exit 0 ;;
- sparc*:BSD/OS:*:*)
- echo sparc-unknown-bsdi${UNAME_RELEASE}
- exit 0 ;;
- *:BSD/OS:*:*)
- echo ${UNAME_MACHINE}-unknown-bsdi${UNAME_RELEASE}
- exit 0 ;;
- *:FreeBSD:*:*)
- if test -x /usr/bin/objformat; then
- if test "elf" = "`/usr/bin/objformat`"; then
- echo ${UNAME_MACHINE}-unknown-freebsdelf`echo ${UNAME_RELEASE}|sed -e 's/[-_].*//'`
- exit 0
- fi
- fi
- echo ${UNAME_MACHINE}-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`
- exit 0 ;;
- *:NetBSD:*:*)
- echo ${UNAME_MACHINE}-unknown-netbsd`echo ${UNAME_RELEASE}|sed -e 's/[-_].*//'`
- exit 0 ;;
- *:OpenBSD:*:*)
- echo ${UNAME_MACHINE}-unknown-openbsd`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'`
- exit 0 ;;
- i*:CYGWIN*:*)
- echo ${UNAME_MACHINE}-pc-cygwin
- exit 0 ;;
- i*:MINGW*:*)
- echo ${UNAME_MACHINE}-pc-mingw32
- exit 0 ;;
- i*:Windows_NT*:* | Pentium*:Windows_NT*:*)
- # How do we know it's Interix rather than the generic POSIX subsystem?
- # It also conflicts with pre-2.0 versions of AT&T UWIN. Should we
- # UNAME_MACHINE based on the output of uname instead of i386?
- echo i386-pc-interix
- exit 0 ;;
- i*:UWIN*:*)
- echo ${UNAME_MACHINE}-pc-uwin
- exit 0 ;;
- p*:CYGWIN*:*)
- echo powerpcle-unknown-cygwin
- exit 0 ;;
- prep*:SunOS:5.*:*)
- echo powerpcle-unknown-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
- exit 0 ;;
- *:GNU:*:*)
- echo `echo ${UNAME_MACHINE}|sed -e 's,[-/].*$,,'`-unknown-gnu`echo ${UNAME_RELEASE}|sed -e 's,/.*$,,'`
- exit 0 ;;
- *:Linux:*:*)
-
- # The BFD linker knows what the default object file format is, so
- # first see if it will tell us. cd to the root directory to prevent
- # problems with other programs or directories called `ld' in the path.
- ld_help_string=`cd /; ld --help 2>&1`
- ld_supported_emulations=`echo $ld_help_string \
- | sed -ne '/supported emulations:/!d
- s/[ ][ ]*/ /g
- s/.*supported emulations: *//
- s/ .*//
- p'`
- case "$ld_supported_emulations" in
- *ia64)
- echo "${UNAME_MACHINE}-unknown-linux"
- exit 0
- ;;
- i?86linux)
- echo "${UNAME_MACHINE}-pc-linux-gnuaout"
- exit 0
- ;;
- i?86coff)
- echo "${UNAME_MACHINE}-pc-linux-gnucoff"
- exit 0
- ;;
- sparclinux)
- echo "${UNAME_MACHINE}-unknown-linux-gnuaout"
- exit 0
- ;;
- armlinux)
- echo "${UNAME_MACHINE}-unknown-linux-gnuaout"
- exit 0
- ;;
- elf32arm*)
- echo "${UNAME_MACHINE}-unknown-linux-gnu"
- exit 0
- ;;
- armelf_linux*)
- echo "${UNAME_MACHINE}-unknown-linux-gnu"
- exit 0
- ;;
- m68klinux)
- echo "${UNAME_MACHINE}-unknown-linux-gnuaout"
- exit 0
- ;;
- elf32ppc)
- # Determine Lib Version
- cat >$dummy.c <
-#if defined(__GLIBC__)
-extern char __libc_version[];
-extern char __libc_release[];
-#endif
-main(argc, argv)
- int argc;
- char *argv[];
-{
-#if defined(__GLIBC__)
- printf("%s %s\n", __libc_version, __libc_release);
-#else
- printf("unkown\n");
-#endif
- return 0;
-}
-EOF
- LIBC=""
- $CC_FOR_BUILD $dummy.c -o $dummy 2>/dev/null
- if test "$?" = 0 ; then
- ./$dummy | grep 1\.99 > /dev/null
- if test "$?" = 0 ; then
- LIBC="libc1"
- fi
- fi
- rm -f $dummy.c $dummy
- echo powerpc-unknown-linux-gnu${LIBC}
- exit 0
- ;;
- esac
-
- if test "${UNAME_MACHINE}" = "alpha" ; then
- sed 's/^ //' <$dummy.s
- .globl main
- .ent main
- main:
- .frame \$30,0,\$26,0
- .prologue 0
- .long 0x47e03d80 # implver $0
- lda \$2,259
- .long 0x47e20c21 # amask $2,$1
- srl \$1,8,\$2
- sll \$2,2,\$2
- sll \$0,3,\$0
- addl \$1,\$0,\$0
- addl \$2,\$0,\$0
- ret \$31,(\$26),1
- .end main
-EOF
- LIBC=""
- $CC_FOR_BUILD $dummy.s -o $dummy 2>/dev/null
- if test "$?" = 0 ; then
- ./$dummy
- case "$?" in
- 7)
- UNAME_MACHINE="alpha"
- ;;
- 15)
- UNAME_MACHINE="alphaev5"
- ;;
- 14)
- UNAME_MACHINE="alphaev56"
- ;;
- 10)
- UNAME_MACHINE="alphapca56"
- ;;
- 16)
- UNAME_MACHINE="alphaev6"
- ;;
- esac
-
- objdump --private-headers $dummy | \
- grep ld.so.1 > /dev/null
- if test "$?" = 0 ; then
- LIBC="libc1"
- fi
- fi
- rm -f $dummy.s $dummy
- echo ${UNAME_MACHINE}-unknown-linux-gnu${LIBC} ; exit 0
- elif test "${UNAME_MACHINE}" = "mips" ; then
- cat >$dummy.c </dev/null && ./$dummy "${UNAME_MACHINE}" && rm $dummy.c $dummy && exit 0
- rm -f $dummy.c $dummy
- else
- # Either a pre-BFD a.out linker (linux-gnuoldld)
- # or one that does not give us useful --help.
- # GCC wants to distinguish between linux-gnuoldld and linux-gnuaout.
- # If ld does not provide *any* "supported emulations:"
- # that means it is gnuoldld.
- echo "$ld_help_string" | grep >/dev/null 2>&1 "supported emulations:"
- test $? != 0 && echo "${UNAME_MACHINE}-pc-linux-gnuoldld" && exit 0
-
- case "${UNAME_MACHINE}" in
- i?86)
- VENDOR=pc;
- ;;
- *)
- VENDOR=unknown;
- ;;
- esac
- # Determine whether the default compiler is a.out or elf
- cat >$dummy.c <
-#ifdef __cplusplus
- int main (int argc, char *argv[]) {
-#else
- int main (argc, argv) int argc; char *argv[]; {
-#endif
-#ifdef __ELF__
-# ifdef __GLIBC__
-# if __GLIBC__ >= 2
- printf ("%s-${VENDOR}-linux-gnu\n", argv[1]);
-# else
- printf ("%s-${VENDOR}-linux-gnulibc1\n", argv[1]);
-# endif
-# else
- printf ("%s-${VENDOR}-linux-gnulibc1\n", argv[1]);
-# endif
-#else
- printf ("%s-${VENDOR}-linux-gnuaout\n", argv[1]);
-#endif
- return 0;
-}
-EOF
- $CC_FOR_BUILD $dummy.c -o $dummy 2>/dev/null && ./$dummy "${UNAME_MACHINE}" && rm $dummy.c $dummy && exit 0
- rm -f $dummy.c $dummy
- fi ;;
-# ptx 4.0 does uname -s correctly, with DYNIX/ptx in there. earlier versions
-# are messed up and put the nodename in both sysname and nodename.
- i?86:DYNIX/ptx:4*:*)
- echo i386-sequent-sysv4
- exit 0 ;;
- i?86:UNIX_SV:4.2MP:2.*)
- # Unixware is an offshoot of SVR4, but it has its own version
- # number series starting with 2...
- # I am not positive that other SVR4 systems won't match this,
- # I just have to hope. -- rms.
- # Use sysv4.2uw... so that sysv4* matches it.
- echo ${UNAME_MACHINE}-pc-sysv4.2uw${UNAME_VERSION}
- exit 0 ;;
- i?86:*:4.*:* | i?86:SYSTEM_V:4.*:*)
- UNAME_REL=`echo ${UNAME_RELEASE} | sed 's/\/MP$//'`
- if grep Novell /usr/include/link.h >/dev/null 2>/dev/null; then
- echo ${UNAME_MACHINE}-univel-sysv${UNAME_REL}
- else
- echo ${UNAME_MACHINE}-pc-sysv${UNAME_REL}
- fi
- exit 0 ;;
- i?86:*:5:7*)
- # Fixed at (any) Pentium or better
- UNAME_MACHINE=i586
- if [ ${UNAME_SYSTEM} = "UnixWare" ] ; then
- echo ${UNAME_MACHINE}-sco-sysv${UNAME_RELEASE}uw${UNAME_VERSION}
- else
- echo ${UNAME_MACHINE}-pc-sysv${UNAME_RELEASE}
- fi
- exit 0 ;;
- i?86:*:3.2:*)
- if test -f /usr/options/cb.name; then
- UNAME_REL=`sed -n 's/.*Version //p' /dev/null >/dev/null ; then
- UNAME_REL=`(/bin/uname -X|egrep Release|sed -e 's/.*= //')`
- (/bin/uname -X|egrep i80486 >/dev/null) && UNAME_MACHINE=i486
- (/bin/uname -X|egrep '^Machine.*Pentium' >/dev/null) \
- && UNAME_MACHINE=i586
- (/bin/uname -X|egrep '^Machine.*Pent ?II' >/dev/null) \
- && UNAME_MACHINE=i686
- (/bin/uname -X|egrep '^Machine.*Pentium Pro' >/dev/null) \
- && UNAME_MACHINE=i686
- echo ${UNAME_MACHINE}-pc-sco$UNAME_REL
- else
- echo ${UNAME_MACHINE}-pc-sysv32
- fi
- exit 0 ;;
- pc:*:*:*)
- # uname -m prints for DJGPP always 'pc', but it prints nothing about
- # the processor, so we play safe by assuming i386.
- echo i386-pc-msdosdjgpp
- exit 0 ;;
- Intel:Mach:3*:*)
- echo i386-pc-mach3
- exit 0 ;;
- paragon:*:*:*)
- echo i860-intel-osf1
- exit 0 ;;
- i860:*:4.*:*) # i860-SVR4
- if grep Stardent /usr/include/sys/uadmin.h >/dev/null 2>&1 ; then
- echo i860-stardent-sysv${UNAME_RELEASE} # Stardent Vistra i860-SVR4
- else # Add other i860-SVR4 vendors below as they are discovered.
- echo i860-unknown-sysv${UNAME_RELEASE} # Unknown i860-SVR4
- fi
- exit 0 ;;
- mini*:CTIX:SYS*5:*)
- # "miniframe"
- echo m68010-convergent-sysv
- exit 0 ;;
- M68*:*:R3V[567]*:*)
- test -r /sysV68 && echo 'm68k-motorola-sysv' && exit 0 ;;
- 3[34]??:*:4.0:3.0 | 3[34]??,*:*:4.0:3.0 | 4850:*:4.0:3.0)
- OS_REL=''
- test -r /etc/.relid \
- && OS_REL=.`sed -n 's/[^ ]* [^ ]* \([0-9][0-9]\).*/\1/p' < /etc/.relid`
- /bin/uname -p 2>/dev/null | grep 86 >/dev/null \
- && echo i486-ncr-sysv4.3${OS_REL} && exit 0
- /bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \
- && echo i586-ncr-sysv4.3${OS_REL} && exit 0 ;;
- 3[34]??:*:4.0:* | 3[34]??,*:*:4.0:*)
- /bin/uname -p 2>/dev/null | grep 86 >/dev/null \
- && echo i486-ncr-sysv4 && exit 0 ;;
- m68*:LynxOS:2.*:*)
- echo m68k-unknown-lynxos${UNAME_RELEASE}
- exit 0 ;;
- mc68030:UNIX_System_V:4.*:*)
- echo m68k-atari-sysv4
- exit 0 ;;
- i?86:LynxOS:2.*:* | i?86:LynxOS:3.[01]*:*)
- echo i386-unknown-lynxos${UNAME_RELEASE}
- exit 0 ;;
- TSUNAMI:LynxOS:2.*:*)
- echo sparc-unknown-lynxos${UNAME_RELEASE}
- exit 0 ;;
- rs6000:LynxOS:2.*:* | PowerPC:LynxOS:2.*:*)
- echo rs6000-unknown-lynxos${UNAME_RELEASE}
- exit 0 ;;
- SM[BE]S:UNIX_SV:*:*)
- echo mips-dde-sysv${UNAME_RELEASE}
- exit 0 ;;
- RM*:ReliantUNIX-*:*:*)
- echo mips-sni-sysv4
- exit 0 ;;
- RM*:SINIX-*:*:*)
- echo mips-sni-sysv4
- exit 0 ;;
- *:SINIX-*:*:*)
- if uname -p 2>/dev/null >/dev/null ; then
- UNAME_MACHINE=`(uname -p) 2>/dev/null`
- echo ${UNAME_MACHINE}-sni-sysv4
- else
- echo ns32k-sni-sysv
- fi
- exit 0 ;;
- PENTIUM:CPunix:4.0*:*) # Unisys `ClearPath HMP IX 4000' SVR4/MP effort
- # says
- echo i586-unisys-sysv4
- exit 0 ;;
- *:UNIX_System_V:4*:FTX*)
- # From Gerald Hewes .
- # How about differentiating between stratus architectures? -djm
- echo hppa1.1-stratus-sysv4
- exit 0 ;;
- *:*:*:FTX*)
- # From seanf@swdc.stratus.com.
- echo i860-stratus-sysv4
- exit 0 ;;
- mc68*:A/UX:*:*)
- echo m68k-apple-aux${UNAME_RELEASE}
- exit 0 ;;
- news*:NEWS-OS:*:6*)
- echo mips-sony-newsos6
- exit 0 ;;
- R[34]000:*System_V*:*:* | R4000:UNIX_SYSV:*:* | R*000:UNIX_SV:*:*)
- if [ -d /usr/nec ]; then
- echo mips-nec-sysv${UNAME_RELEASE}
- else
- echo mips-unknown-sysv${UNAME_RELEASE}
- fi
- exit 0 ;;
- BeBox:BeOS:*:*) # BeOS running on hardware made by Be, PPC only.
- echo powerpc-be-beos
- exit 0 ;;
- BeMac:BeOS:*:*) # BeOS running on Mac or Mac clone, PPC only.
- echo powerpc-apple-beos
- exit 0 ;;
- BePC:BeOS:*:*) # BeOS running on Intel PC compatible.
- echo i586-pc-beos
- exit 0 ;;
- SX-4:SUPER-UX:*:*)
- echo sx4-nec-superux${UNAME_RELEASE}
- exit 0 ;;
- SX-5:SUPER-UX:*:*)
- echo sx5-nec-superux${UNAME_RELEASE}
- exit 0 ;;
- Power*:Rhapsody:*:*)
- echo powerpc-apple-rhapsody${UNAME_RELEASE}
- exit 0 ;;
- *:Rhapsody:*:*)
- echo ${UNAME_MACHINE}-apple-rhapsody${UNAME_RELEASE}
- exit 0 ;;
- *:QNX:*:4*)
- echo i386-qnx-qnx${UNAME_VERSION}
- exit 0 ;;
-esac
-
-#echo '(No uname command or uname output not recognized.)' 1>&2
-#echo "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" 1>&2
-
-cat >$dummy.c <
-# include
-#endif
-main ()
-{
-#if defined (sony)
-#if defined (MIPSEB)
- /* BFD wants "bsd" instead of "newsos". Perhaps BFD should be changed,
- I don't know.... */
- printf ("mips-sony-bsd\n"); exit (0);
-#else
-#include
- printf ("m68k-sony-newsos%s\n",
-#ifdef NEWSOS4
- "4"
-#else
- ""
-#endif
- ); exit (0);
-#endif
-#endif
-
-#if defined (__arm) && defined (__acorn) && defined (__unix)
- printf ("arm-acorn-riscix"); exit (0);
-#endif
-
-#if defined (hp300) && !defined (hpux)
- printf ("m68k-hp-bsd\n"); exit (0);
-#endif
-
-#if defined (NeXT)
-#if !defined (__ARCHITECTURE__)
-#define __ARCHITECTURE__ "m68k"
-#endif
- int version;
- version=`(hostinfo | sed -n 's/.*NeXT Mach \([0-9]*\).*/\1/p') 2>/dev/null`;
- if (version < 4)
- printf ("%s-next-nextstep%d\n", __ARCHITECTURE__, version);
- else
- printf ("%s-next-openstep%d\n", __ARCHITECTURE__, version);
- exit (0);
-#endif
-
-#if defined (MULTIMAX) || defined (n16)
-#if defined (UMAXV)
- printf ("ns32k-encore-sysv\n"); exit (0);
-#else
-#if defined (CMU)
- printf ("ns32k-encore-mach\n"); exit (0);
-#else
- printf ("ns32k-encore-bsd\n"); exit (0);
-#endif
-#endif
-#endif
-
-#if defined (__386BSD__)
- printf ("i386-pc-bsd\n"); exit (0);
-#endif
-
-#if defined (sequent)
-#if defined (i386)
- printf ("i386-sequent-dynix\n"); exit (0);
-#endif
-#if defined (ns32000)
- printf ("ns32k-sequent-dynix\n"); exit (0);
-#endif
-#endif
-
-#if defined (_SEQUENT_)
- struct utsname un;
-
- uname(&un);
-
- if (strncmp(un.version, "V2", 2) == 0) {
- printf ("i386-sequent-ptx2\n"); exit (0);
- }
- if (strncmp(un.version, "V1", 2) == 0) { /* XXX is V1 correct? */
- printf ("i386-sequent-ptx1\n"); exit (0);
- }
- printf ("i386-sequent-ptx\n"); exit (0);
-
-#endif
-
-#if defined (vax)
-#if !defined (ultrix)
- printf ("vax-dec-bsd\n"); exit (0);
-#else
- printf ("vax-dec-ultrix\n"); exit (0);
-#endif
-#endif
-
-#if defined (alliant) && defined (i860)
- printf ("i860-alliant-bsd\n"); exit (0);
-#endif
-
- exit (1);
-}
-EOF
-
-$CC_FOR_BUILD $dummy.c -o $dummy 2>/dev/null && ./$dummy && rm $dummy.c $dummy && exit 0
-rm -f $dummy.c $dummy
-
-# Apollos put the system type in the environment.
-
-test -d /usr/apollo && { echo ${ISP}-apollo-${SYSTYPE}; exit 0; }
-
-# Convex versions that predate uname can use getsysinfo(1)
-
-if [ -x /usr/convex/getsysinfo ]
-then
- case `getsysinfo -f cpu_type` in
- c1*)
- echo c1-convex-bsd
- exit 0 ;;
- c2*)
- if getsysinfo -f scalar_acc
- then echo c32-convex-bsd
- else echo c2-convex-bsd
- fi
- exit 0 ;;
- c34*)
- echo c34-convex-bsd
- exit 0 ;;
- c38*)
- echo c38-convex-bsd
- exit 0 ;;
- c4*)
- echo c4-convex-bsd
- exit 0 ;;
- esac
-fi
-
-#echo '(Unable to guess system type)' 1>&2
-
-exit 1
diff --git a/pcre/config.h b/pcre/config.h
deleted file mode 100644
index c767cbb4..00000000
--- a/pcre/config.h
+++ /dev/null
@@ -1,5 +0,0 @@
-
-/* For Privoxy, we just use Privoxy's config.h */
-
-#include "../config.h"
-
diff --git a/pcre/config.in b/pcre/config.in
deleted file mode 100644
index 02f42593..00000000
--- a/pcre/config.in
+++ /dev/null
@@ -1,33 +0,0 @@
-
-/* On Unix systems config.in is converted by configure into config.h. PCRE is
-written in Standard C, but there are a few non-standard things it can cope
-with, allowing it to run on SunOS4 and other "close to standard" systems.
-
-On a non-Unix system you should just copy this file into config.h and change
-the definitions of HAVE_STRERROR and HAVE_MEMMOVE to 1. Unfortunately, because
-of the way autoconf works, these cannot be made the defaults. If your system
-has bcopy() and not memmove(), change the definition of HAVE_BCOPY instead of
-HAVE_MEMMOVE. If your system has neither bcopy() nor memmove(), leave them both
-as 0; an emulation function will be used. */
-
-/* Define to empty if the keyword does not work. */
-
-#undef const
-
-/* Define to `unsigned' if doesn't define size_t. */
-
-#undef size_t
-
-/* The following two definitions are mainly for the benefit of SunOS4, which
-doesn't have the strerror() or memmove() functions that should be present in
-all Standard C libraries. The macros HAVE_STRERROR and HAVE_MEMMOVE should
-normally be defined with the value 1 for other systems, but unfortunately we
-can't make this the default because "configure" files generated by autoconf
-will only change 0 to 1; they won't change 1 to 0 if the functions are not
-found. If HAVE_MEMMOVE is set to 1, the value of HAVE_BCOPY is not relevant. */
-
-#define HAVE_STRERROR 0
-#define HAVE_MEMMOVE 0
-#define HAVE_BCOPY 0
-
-/* End */
diff --git a/pcre/config.sub b/pcre/config.sub
deleted file mode 100644
index 28426bb8..00000000
--- a/pcre/config.sub
+++ /dev/null
@@ -1,1232 +0,0 @@
-#! /bin/sh
-# Configuration validation subroutine script, version 1.1.
-# Copyright (C) 1991, 92-97, 1998, 1999 Free Software Foundation, Inc.
-# This file is (in principle) common to ALL GNU software.
-# The presence of a machine in this file suggests that SOME GNU software
-# can handle that machine. It does not imply ALL GNU software can.
-#
-# This file is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place - Suite 330,
-# Boston, MA 02111-1307, USA.
-
-# As a special exception to the GNU General Public License, if you
-# distribute this file as part of a program that contains a
-# configuration script generated by Autoconf, you may include it under
-# the same distribution terms that you use for the rest of that program.
-
-# Configuration subroutine to validate and canonicalize a configuration type.
-# Supply the specified configuration type as an argument.
-# If it is invalid, we print an error message on stderr and exit with code 1.
-# Otherwise, we print the canonical config type on stdout and succeed.
-
-# This file is supposed to be the same for all GNU packages
-# and recognize all the CPU types, system types and aliases
-# that are meaningful with *any* GNU software.
-# Each package is responsible for reporting which valid configurations
-# it does not support. The user should be able to distinguish
-# a failure to support a valid configuration from a meaningless
-# configuration.
-
-# The goal of this file is to map all the various variations of a given
-# machine specification into a single specification in the form:
-# CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM
-# or in some cases, the newer four-part form:
-# CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM
-# It is wrong to echo any other type of specification.
-
-if [ x$1 = x ]
-then
- echo Configuration name missing. 1>&2
- echo "Usage: $0 CPU-MFR-OPSYS" 1>&2
- echo "or $0 ALIAS" 1>&2
- echo where ALIAS is a recognized configuration type. 1>&2
- exit 1
-fi
-
-# First pass through any local machine types.
-case $1 in
- *local*)
- echo $1
- exit 0
- ;;
- *)
- ;;
-esac
-
-# Separate what the user gave into CPU-COMPANY and OS or KERNEL-OS (if any).
-# Here we must recognize all the valid KERNEL-OS combinations.
-maybe_os=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\2/'`
-case $maybe_os in
- linux-gnu*)
- os=-$maybe_os
- basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'`
- ;;
- *)
- basic_machine=`echo $1 | sed 's/-[^-]*$//'`
- if [ $basic_machine != $1 ]
- then os=`echo $1 | sed 's/.*-/-/'`
- else os=; fi
- ;;
-esac
-
-### Let's recognize common machines as not being operating systems so
-### that things like config.sub decstation-3100 work. We also
-### recognize some manufacturers as not being operating systems, so we
-### can provide default operating systems below.
-case $os in
- -sun*os*)
- # Prevent following clause from handling this invalid input.
- ;;
- -dec* | -mips* | -sequent* | -encore* | -pc532* | -sgi* | -sony* | \
- -att* | -7300* | -3300* | -delta* | -motorola* | -sun[234]* | \
- -unicom* | -ibm* | -next | -hp | -isi* | -apollo | -altos* | \
- -convergent* | -ncr* | -news | -32* | -3600* | -3100* | -hitachi* |\
- -c[123]* | -convex* | -sun | -crds | -omron* | -dg | -ultra | -tti* | \
- -harris | -dolphin | -highlevel | -gould | -cbm | -ns | -masscomp | \
- -apple)
- os=
- basic_machine=$1
- ;;
- -sim | -cisco | -oki | -wec | -winbond)
- os=
- basic_machine=$1
- ;;
- -scout)
- ;;
- -wrs)
- os=-vxworks
- basic_machine=$1
- ;;
- -hiux*)
- os=-hiuxwe2
- ;;
- -sco5)
- os=-sco3.2v5
- basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
- ;;
- -sco4)
- os=-sco3.2v4
- basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
- ;;
- -sco3.2.[4-9]*)
- os=`echo $os | sed -e 's/sco3.2./sco3.2v/'`
- basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
- ;;
- -sco3.2v[4-9]*)
- # Don't forget version if it is 3.2v4 or newer.
- basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
- ;;
- -sco*)
- os=-sco3.2v2
- basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
- ;;
- -udk*)
- basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
- ;;
- -isc)
- os=-isc2.2
- basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
- ;;
- -clix*)
- basic_machine=clipper-intergraph
- ;;
- -isc*)
- basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
- ;;
- -lynx*)
- os=-lynxos
- ;;
- -ptx*)
- basic_machine=`echo $1 | sed -e 's/86-.*/86-sequent/'`
- ;;
- -windowsnt*)
- os=`echo $os | sed -e 's/windowsnt/winnt/'`
- ;;
- -psos*)
- os=-psos
- ;;
- -mint | -mint[0-9]*)
- basic_machine=m68k-atari
- os=-mint
- ;;
-esac
-
-# Decode aliases for certain CPU-COMPANY combinations.
-case $basic_machine in
- # Recognize the basic CPU types without company name.
- # Some are omitted here because they have special meanings below.
- tahoe | i860 | ia64 | m32r | m68k | m68000 | m88k | ns32k | arc | arm \
- | arme[lb] | pyramid | mn10200 | mn10300 | tron | a29k \
- | 580 | i960 | h8300 \
- | hppa | hppa1.0 | hppa1.1 | hppa2.0 | hppa2.0w | hppa2.0n \
- | alpha | alphaev[4-7] | alphaev56 | alphapca5[67] \
- | we32k | ns16k | clipper | i370 | sh | powerpc | powerpcle \
- | 1750a | dsp16xx | pdp11 | mips16 | mips64 | mipsel | mips64el \
- | mips64orion | mips64orionel | mipstx39 | mipstx39el \
- | mips64vr4300 | mips64vr4300el | mips64vr4100 | mips64vr4100el \
- | mips64vr5000 | miprs64vr5000el | mcore \
- | sparc | sparclet | sparclite | sparc64 | sparcv9 | v850 | c4x \
- | thumb | d10v | fr30)
- basic_machine=$basic_machine-unknown
- ;;
- m88110 | m680[12346]0 | m683?2 | m68360 | m5200 | z8k | v70 | h8500 | w65 | pj | pjl)
- ;;
-
- # We use `pc' rather than `unknown'
- # because (1) that's what they normally are, and
- # (2) the word "unknown" tends to confuse beginning users.
- i[34567]86)
- basic_machine=$basic_machine-pc
- ;;
- # Object if more than one company name word.
- *-*-*)
- echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2
- exit 1
- ;;
- # Recognize the basic CPU types with company name.
- # FIXME: clean up the formatting here.
- vax-* | tahoe-* | i[34567]86-* | i860-* | ia64-* | m32r-* | m68k-* | m68000-* \
- | m88k-* | sparc-* | ns32k-* | fx80-* | arc-* | arm-* | c[123]* \
- | mips-* | pyramid-* | tron-* | a29k-* | romp-* | rs6000-* \
- | power-* | none-* | 580-* | cray2-* | h8300-* | h8500-* | i960-* \
- | xmp-* | ymp-* \
- | hppa-* | hppa1.0-* | hppa1.1-* | hppa2.0-* | hppa2.0w-* | hppa2.0n-* \
- | alpha-* | alphaev[4-7]-* | alphaev56-* | alphapca5[67]-* \
- | we32k-* | cydra-* | ns16k-* | pn-* | np1-* | xps100-* \
- | clipper-* | orion-* \
- | sparclite-* | pdp11-* | sh-* | powerpc-* | powerpcle-* \
- | sparc64-* | sparcv9-* | sparc86x-* | mips16-* | mips64-* | mipsel-* \
- | mips64el-* | mips64orion-* | mips64orionel-* \
- | mips64vr4100-* | mips64vr4100el-* | mips64vr4300-* | mips64vr4300el-* \
- | mipstx39-* | mipstx39el-* | mcore-* \
- | f301-* | armv*-* | t3e-* \
- | m88110-* | m680[01234]0-* | m683?2-* | m68360-* | z8k-* | d10v-* \
- | thumb-* | v850-* | d30v-* | tic30-* | c30-* | fr30-* )
- ;;
- # Recognize the various machine names and aliases which stand
- # for a CPU type and a company and sometimes even an OS.
- 386bsd)
- basic_machine=i386-unknown
- os=-bsd
- ;;
- 3b1 | 7300 | 7300-att | att-7300 | pc7300 | safari | unixpc)
- basic_machine=m68000-att
- ;;
- 3b*)
- basic_machine=we32k-att
- ;;
- a29khif)
- basic_machine=a29k-amd
- os=-udi
- ;;
- adobe68k)
- basic_machine=m68010-adobe
- os=-scout
- ;;
- alliant | fx80)
- basic_machine=fx80-alliant
- ;;
- altos | altos3068)
- basic_machine=m68k-altos
- ;;
- am29k)
- basic_machine=a29k-none
- os=-bsd
- ;;
- amdahl)
- basic_machine=580-amdahl
- os=-sysv
- ;;
- amiga | amiga-*)
- basic_machine=m68k-cbm
- ;;
- amigaos | amigados)
- basic_machine=m68k-cbm
- os=-amigaos
- ;;
- amigaunix | amix)
- basic_machine=m68k-cbm
- os=-sysv4
- ;;
- apollo68)
- basic_machine=m68k-apollo
- os=-sysv
- ;;
- apollo68bsd)
- basic_machine=m68k-apollo
- os=-bsd
- ;;
- aux)
- basic_machine=m68k-apple
- os=-aux
- ;;
- balance)
- basic_machine=ns32k-sequent
- os=-dynix
- ;;
- convex-c1)
- basic_machine=c1-convex
- os=-bsd
- ;;
- convex-c2)
- basic_machine=c2-convex
- os=-bsd
- ;;
- convex-c32)
- basic_machine=c32-convex
- os=-bsd
- ;;
- convex-c34)
- basic_machine=c34-convex
- os=-bsd
- ;;
- convex-c38)
- basic_machine=c38-convex
- os=-bsd
- ;;
- cray | ymp)
- basic_machine=ymp-cray
- os=-unicos
- ;;
- cray2)
- basic_machine=cray2-cray
- os=-unicos
- ;;
- [ctj]90-cray)
- basic_machine=c90-cray
- os=-unicos
- ;;
- crds | unos)
- basic_machine=m68k-crds
- ;;
- da30 | da30-*)
- basic_machine=m68k-da30
- ;;
- decstation | decstation-3100 | pmax | pmax-* | pmin | dec3100 | decstatn)
- basic_machine=mips-dec
- ;;
- delta | 3300 | motorola-3300 | motorola-delta \
- | 3300-motorola | delta-motorola)
- basic_machine=m68k-motorola
- ;;
- delta88)
- basic_machine=m88k-motorola
- os=-sysv3
- ;;
- dpx20 | dpx20-*)
- basic_machine=rs6000-bull
- os=-bosx
- ;;
- dpx2* | dpx2*-bull)
- basic_machine=m68k-bull
- os=-sysv3
- ;;
- ebmon29k)
- basic_machine=a29k-amd
- os=-ebmon
- ;;
- elxsi)
- basic_machine=elxsi-elxsi
- os=-bsd
- ;;
- encore | umax | mmax)
- basic_machine=ns32k-encore
- ;;
- es1800 | OSE68k | ose68k | ose | OSE)
- basic_machine=m68k-ericsson
- os=-ose
- ;;
- fx2800)
- basic_machine=i860-alliant
- ;;
- genix)
- basic_machine=ns32k-ns
- ;;
- gmicro)
- basic_machine=tron-gmicro
- os=-sysv
- ;;
- h3050r* | hiux*)
- basic_machine=hppa1.1-hitachi
- os=-hiuxwe2
- ;;
- h8300hms)
- basic_machine=h8300-hitachi
- os=-hms
- ;;
- h8300xray)
- basic_machine=h8300-hitachi
- os=-xray
- ;;
- h8500hms)
- basic_machine=h8500-hitachi
- os=-hms
- ;;
- harris)
- basic_machine=m88k-harris
- os=-sysv3
- ;;
- hp300-*)
- basic_machine=m68k-hp
- ;;
- hp300bsd)
- basic_machine=m68k-hp
- os=-bsd
- ;;
- hp300hpux)
- basic_machine=m68k-hp
- os=-hpux
- ;;
- hp3k9[0-9][0-9] | hp9[0-9][0-9])
- basic_machine=hppa1.0-hp
- ;;
- hp9k2[0-9][0-9] | hp9k31[0-9])
- basic_machine=m68000-hp
- ;;
- hp9k3[2-9][0-9])
- basic_machine=m68k-hp
- ;;
- hp9k6[0-9][0-9] | hp6[0-9][0-9])
- basic_machine=hppa1.0-hp
- ;;
- hp9k7[0-79][0-9] | hp7[0-79][0-9])
- basic_machine=hppa1.1-hp
- ;;
- hp9k78[0-9] | hp78[0-9])
- # FIXME: really hppa2.0-hp
- basic_machine=hppa1.1-hp
- ;;
- hp9k8[67]1 | hp8[67]1 | hp9k80[24] | hp80[24] | hp9k8[78]9 | hp8[78]9 | hp9k893 | hp893)
- # FIXME: really hppa2.0-hp
- basic_machine=hppa1.1-hp
- ;;
- hp9k8[0-9][13679] | hp8[0-9][13679])
- basic_machine=hppa1.1-hp
- ;;
- hp9k8[0-9][0-9] | hp8[0-9][0-9])
- basic_machine=hppa1.0-hp
- ;;
- hppa-next)
- os=-nextstep3
- ;;
- hppaosf)
- basic_machine=hppa1.1-hp
- os=-osf
- ;;
- hppro)
- basic_machine=hppa1.1-hp
- os=-proelf
- ;;
- i370-ibm* | ibm*)
- basic_machine=i370-ibm
- ;;
-# I'm not sure what "Sysv32" means. Should this be sysv3.2?
- i[34567]86v32)
- basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
- os=-sysv32
- ;;
- i[34567]86v4*)
- basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
- os=-sysv4
- ;;
- i[34567]86v)
- basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
- os=-sysv
- ;;
- i[34567]86sol2)
- basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
- os=-solaris2
- ;;
- i386mach)
- basic_machine=i386-mach
- os=-mach
- ;;
- i386-vsta | vsta)
- basic_machine=i386-unknown
- os=-vsta
- ;;
- i386-go32 | go32)
- basic_machine=i386-unknown
- os=-go32
- ;;
- i386-mingw32 | mingw32)
- basic_machine=i386-unknown
- os=-mingw32
- ;;
- i386-qnx | qnx)
- basic_machine=i386-qnx
- ;;
- iris | iris4d)
- basic_machine=mips-sgi
- case $os in
- -irix*)
- ;;
- *)
- os=-irix4
- ;;
- esac
- ;;
- isi68 | isi)
- basic_machine=m68k-isi
- os=-sysv
- ;;
- m88k-omron*)
- basic_machine=m88k-omron
- ;;
- magnum | m3230)
- basic_machine=mips-mips
- os=-sysv
- ;;
- merlin)
- basic_machine=ns32k-utek
- os=-sysv
- ;;
- miniframe)
- basic_machine=m68000-convergent
- ;;
- *mint | -mint[0-9]* | *MiNT | *MiNT[0-9]*)
- basic_machine=m68k-atari
- os=-mint
- ;;
- mipsel*-linux*)
- basic_machine=mipsel-unknown
- os=-linux-gnu
- ;;
- mips*-linux*)
- basic_machine=mips-unknown
- os=-linux-gnu
- ;;
- mips3*-*)
- basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`
- ;;
- mips3*)
- basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`-unknown
- ;;
- monitor)
- basic_machine=m68k-rom68k
- os=-coff
- ;;
- msdos)
- basic_machine=i386-unknown
- os=-msdos
- ;;
- mvs)
- basic_machine=i370-ibm
- os=-mvs
- ;;
- ncr3000)
- basic_machine=i486-ncr
- os=-sysv4
- ;;
- netbsd386)
- basic_machine=i386-unknown
- os=-netbsd
- ;;
- netwinder)
- basic_machine=armv4l-rebel
- os=-linux
- ;;
- news | news700 | news800 | news900)
- basic_machine=m68k-sony
- os=-newsos
- ;;
- news1000)
- basic_machine=m68030-sony
- os=-newsos
- ;;
- news-3600 | risc-news)
- basic_machine=mips-sony
- os=-newsos
- ;;
- necv70)
- basic_machine=v70-nec
- os=-sysv
- ;;
- next | m*-next )
- basic_machine=m68k-next
- case $os in
- -nextstep* )
- ;;
- -ns2*)
- os=-nextstep2
- ;;
- *)
- os=-nextstep3
- ;;
- esac
- ;;
- nh3000)
- basic_machine=m68k-harris
- os=-cxux
- ;;
- nh[45]000)
- basic_machine=m88k-harris
- os=-cxux
- ;;
- nindy960)
- basic_machine=i960-intel
- os=-nindy
- ;;
- mon960)
- basic_machine=i960-intel
- os=-mon960
- ;;
- np1)
- basic_machine=np1-gould
- ;;
- op50n-* | op60c-*)
- basic_machine=hppa1.1-oki
- os=-proelf
- ;;
- OSE68000 | ose68000)
- basic_machine=m68000-ericsson
- os=-ose
- ;;
- os68k)
- basic_machine=m68k-none
- os=-os68k
- ;;
- pa-hitachi)
- basic_machine=hppa1.1-hitachi
- os=-hiuxwe2
- ;;
- paragon)
- basic_machine=i860-intel
- os=-osf
- ;;
- pbd)
- basic_machine=sparc-tti
- ;;
- pbb)
- basic_machine=m68k-tti
- ;;
- pc532 | pc532-*)
- basic_machine=ns32k-pc532
- ;;
- pentium | p5 | k5 | k6 | nexen)
- basic_machine=i586-pc
- ;;
- pentiumpro | p6 | 6x86)
- basic_machine=i686-pc
- ;;
- pentiumii | pentium2)
- basic_machine=i786-pc
- ;;
- pentium-* | p5-* | k5-* | k6-* | nexen-*)
- basic_machine=i586-`echo $basic_machine | sed 's/^[^-]*-//'`
- ;;
- pentiumpro-* | p6-* | 6x86-*)
- basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'`
- ;;
- pentiumii-* | pentium2-*)
- basic_machine=i786-`echo $basic_machine | sed 's/^[^-]*-//'`
- ;;
- pn)
- basic_machine=pn-gould
- ;;
- power) basic_machine=rs6000-ibm
- ;;
- ppc) basic_machine=powerpc-unknown
- ;;
- ppc-*) basic_machine=powerpc-`echo $basic_machine | sed 's/^[^-]*-//'`
- ;;
- ppcle | powerpclittle | ppc-le | powerpc-little)
- basic_machine=powerpcle-unknown
- ;;
- ppcle-* | powerpclittle-*)
- basic_machine=powerpcle-`echo $basic_machine | sed 's/^[^-]*-//'`
- ;;
- ps2)
- basic_machine=i386-ibm
- ;;
- rom68k)
- basic_machine=m68k-rom68k
- os=-coff
- ;;
- rm[46]00)
- basic_machine=mips-siemens
- ;;
- rtpc | rtpc-*)
- basic_machine=romp-ibm
- ;;
- sa29200)
- basic_machine=a29k-amd
- os=-udi
- ;;
- sequent)
- basic_machine=i386-sequent
- ;;
- sh)
- basic_machine=sh-hitachi
- os=-hms
- ;;
- sparclite-wrs)
- basic_machine=sparclite-wrs
- os=-vxworks
- ;;
- sps7)
- basic_machine=m68k-bull
- os=-sysv2
- ;;
- spur)
- basic_machine=spur-unknown
- ;;
- st2000)
- basic_machine=m68k-tandem
- ;;
- stratus)
- basic_machine=i860-stratus
- os=-sysv4
- ;;
- sun2)
- basic_machine=m68000-sun
- ;;
- sun2os3)
- basic_machine=m68000-sun
- os=-sunos3
- ;;
- sun2os4)
- basic_machine=m68000-sun
- os=-sunos4
- ;;
- sun3os3)
- basic_machine=m68k-sun
- os=-sunos3
- ;;
- sun3os4)
- basic_machine=m68k-sun
- os=-sunos4
- ;;
- sun4os3)
- basic_machine=sparc-sun
- os=-sunos3
- ;;
- sun4os4)
- basic_machine=sparc-sun
- os=-sunos4
- ;;
- sun4sol2)
- basic_machine=sparc-sun
- os=-solaris2
- ;;
- sun3 | sun3-*)
- basic_machine=m68k-sun
- ;;
- sun4)
- basic_machine=sparc-sun
- ;;
- sun386 | sun386i | roadrunner)
- basic_machine=i386-sun
- ;;
- symmetry)
- basic_machine=i386-sequent
- os=-dynix
- ;;
- t3e)
- basic_machine=t3e-cray
- os=-unicos
- ;;
- tx39)
- basic_machine=mipstx39-unknown
- ;;
- tx39el)
- basic_machine=mipstx39el-unknown
- ;;
- tower | tower-32)
- basic_machine=m68k-ncr
- ;;
- udi29k)
- basic_machine=a29k-amd
- os=-udi
- ;;
- ultra3)
- basic_machine=a29k-nyu
- os=-sym1
- ;;
- v810 | necv810)
- basic_machine=v810-nec
- os=-none
- ;;
- vaxv)
- basic_machine=vax-dec
- os=-sysv
- ;;
- vms)
- basic_machine=vax-dec
- os=-vms
- ;;
- vpp*|vx|vx-*)
- basic_machine=f301-fujitsu
- ;;
- vxworks960)
- basic_machine=i960-wrs
- os=-vxworks
- ;;
- vxworks68)
- basic_machine=m68k-wrs
- os=-vxworks
- ;;
- vxworks29k)
- basic_machine=a29k-wrs
- os=-vxworks
- ;;
- w65*)
- basic_machine=w65-wdc
- os=-none
- ;;
- w89k-*)
- basic_machine=hppa1.1-winbond
- os=-proelf
- ;;
- xmp)
- basic_machine=xmp-cray
- os=-unicos
- ;;
- xps | xps100)
- basic_machine=xps100-honeywell
- ;;
- z8k-*-coff)
- basic_machine=z8k-unknown
- os=-sim
- ;;
- none)
- basic_machine=none-none
- os=-none
- ;;
-
-# Here we handle the default manufacturer of certain CPU types. It is in
-# some cases the only manufacturer, in others, it is the most popular.
- w89k)
- basic_machine=hppa1.1-winbond
- ;;
- op50n)
- basic_machine=hppa1.1-oki
- ;;
- op60c)
- basic_machine=hppa1.1-oki
- ;;
- mips)
- if [ x$os = x-linux-gnu ]; then
- basic_machine=mips-unknown
- else
- basic_machine=mips-mips
- fi
- ;;
- romp)
- basic_machine=romp-ibm
- ;;
- rs6000)
- basic_machine=rs6000-ibm
- ;;
- vax)
- basic_machine=vax-dec
- ;;
- pdp11)
- basic_machine=pdp11-dec
- ;;
- we32k)
- basic_machine=we32k-att
- ;;
- sparc | sparcv9)
- basic_machine=sparc-sun
- ;;
- cydra)
- basic_machine=cydra-cydrome
- ;;
- orion)
- basic_machine=orion-highlevel
- ;;
- orion105)
- basic_machine=clipper-highlevel
- ;;
- mac | mpw | mac-mpw)
- basic_machine=m68k-apple
- ;;
- pmac | pmac-mpw)
- basic_machine=powerpc-apple
- ;;
- c4x*)
- basic_machine=c4x-none
- os=-coff
- ;;
- *)
- echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2
- exit 1
- ;;
-esac
-
-# Here we canonicalize certain aliases for manufacturers.
-case $basic_machine in
- *-digital*)
- basic_machine=`echo $basic_machine | sed 's/digital.*/dec/'`
- ;;
- *-commodore*)
- basic_machine=`echo $basic_machine | sed 's/commodore.*/cbm/'`
- ;;
- *)
- ;;
-esac
-
-# Decode manufacturer-specific aliases for certain operating systems.
-
-if [ x"$os" != x"" ]
-then
-case $os in
- # First match some system type aliases
- # that might get confused with valid system types.
- # -solaris* is a basic system type, with this one exception.
- -solaris1 | -solaris1.*)
- os=`echo $os | sed -e 's|solaris1|sunos4|'`
- ;;
- -solaris)
- os=-solaris2
- ;;
- -svr4*)
- os=-sysv4
- ;;
- -unixware*)
- os=-sysv4.2uw
- ;;
- -gnu/linux*)
- os=`echo $os | sed -e 's|gnu/linux|linux-gnu|'`
- ;;
- # First accept the basic system types.
- # The portable systems comes first.
- # Each alternative MUST END IN A *, to match a version number.
- # -sysv* is not here because it comes later, after sysvr4.
- -gnu* | -bsd* | -mach* | -minix* | -genix* | -ultrix* | -irix* \
- | -*vms* | -sco* | -esix* | -isc* | -aix* | -sunos | -sunos[34]*\
- | -hpux* | -unos* | -osf* | -luna* | -dgux* | -solaris* | -sym* \
- | -amigaos* | -amigados* | -msdos* | -newsos* | -unicos* | -aof* \
- | -aos* \
- | -nindy* | -vxsim* | -vxworks* | -ebmon* | -hms* | -mvs* \
- | -clix* | -riscos* | -uniplus* | -iris* | -rtu* | -xenix* \
- | -hiux* | -386bsd* | -netbsd* | -openbsd* | -freebsd* | -riscix* \
- | -lynxos* | -bosx* | -nextstep* | -cxux* | -aout* | -elf* | -oabi* \
- | -ptx* | -coff* | -ecoff* | -winnt* | -domain* | -vsta* \
- | -udi* | -eabi* | -lites* | -ieee* | -go32* | -aux* \
- | -cygwin* | -pe* | -psos* | -moss* | -proelf* | -rtems* \
- | -mingw32* | -linux-gnu* | -uxpv* | -beos* | -mpeix* | -udk* \
- | -interix* | -uwin* | -rhapsody* | -opened* | -openstep* | -oskit*)
- # Remember, each alternative MUST END IN *, to match a version number.
- ;;
- -sim | -es1800* | -hms* | -xray | -os68k* | -none* | -v88r* \
- | -windows* | -osx | -abug | -netware* | -os9* | -beos* \
- | -macos* | -mpw* | -magic* | -mon960* | -lnews*)
- ;;
- -mac*)
- os=`echo $os | sed -e 's|mac|macos|'`
- ;;
- -linux*)
- os=`echo $os | sed -e 's|linux|linux-gnu|'`
- ;;
- -sunos5*)
- os=`echo $os | sed -e 's|sunos5|solaris2|'`
- ;;
- -sunos6*)
- os=`echo $os | sed -e 's|sunos6|solaris3|'`
- ;;
- -opened*)
- os=-openedition
- ;;
- -osfrose*)
- os=-osfrose
- ;;
- -osf*)
- os=-osf
- ;;
- -utek*)
- os=-bsd
- ;;
- -dynix*)
- os=-bsd
- ;;
- -acis*)
- os=-aos
- ;;
- -386bsd)
- os=-bsd
- ;;
- -ctix* | -uts*)
- os=-sysv
- ;;
- -ns2 )
- os=-nextstep2
- ;;
- # Preserve the version number of sinix5.
- -sinix5.*)
- os=`echo $os | sed -e 's|sinix|sysv|'`
- ;;
- -sinix*)
- os=-sysv4
- ;;
- -triton*)
- os=-sysv3
- ;;
- -oss*)
- os=-sysv3
- ;;
- -qnx)
- os=-qnx4
- ;;
- -svr4)
- os=-sysv4
- ;;
- -svr3)
- os=-sysv3
- ;;
- -sysvr4)
- os=-sysv4
- ;;
- # This must come after -sysvr4.
- -sysv*)
- ;;
- -ose*)
- os=-ose
- ;;
- -es1800*)
- os=-ose
- ;;
- -xenix)
- os=-xenix
- ;;
- -*mint | -*MiNT)
- os=-mint
- ;;
- -none)
- ;;
- *)
- # Get rid of the `-' at the beginning of $os.
- os=`echo $os | sed 's/[^-]*-//'`
- echo Invalid configuration \`$1\': system \`$os\' not recognized 1>&2
- exit 1
- ;;
-esac
-else
-
-# Here we handle the default operating systems that come with various machines.
-# The value should be what the vendor currently ships out the door with their
-# machine or put another way, the most popular os provided with the machine.
-
-# Note that if you're going to try to match "-MANUFACTURER" here (say,
-# "-sun"), then you have to tell the case statement up towards the top
-# that MANUFACTURER isn't an operating system. Otherwise, code above
-# will signal an error saying that MANUFACTURER isn't an operating
-# system, and we'll never get to this point.
-
-case $basic_machine in
- *-acorn)
- os=-riscix1.2
- ;;
- arm*-rebel)
- os=-linux
- ;;
- arm*-semi)
- os=-aout
- ;;
- pdp11-*)
- os=-none
- ;;
- *-dec | vax-*)
- os=-ultrix4.2
- ;;
- m68*-apollo)
- os=-domain
- ;;
- i386-sun)
- os=-sunos4.0.2
- ;;
- m68000-sun)
- os=-sunos3
- # This also exists in the configure program, but was not the
- # default.
- # os=-sunos4
- ;;
- m68*-cisco)
- os=-aout
- ;;
- mips*-cisco)
- os=-elf
- ;;
- mips*-*)
- os=-elf
- ;;
- *-tti) # must be before sparc entry or we get the wrong os.
- os=-sysv3
- ;;
- sparc-* | *-sun)
- os=-sunos4.1.1
- ;;
- *-be)
- os=-beos
- ;;
- *-ibm)
- os=-aix
- ;;
- *-wec)
- os=-proelf
- ;;
- *-winbond)
- os=-proelf
- ;;
- *-oki)
- os=-proelf
- ;;
- *-hp)
- os=-hpux
- ;;
- *-hitachi)
- os=-hiux
- ;;
- i860-* | *-att | *-ncr | *-altos | *-motorola | *-convergent)
- os=-sysv
- ;;
- *-cbm)
- os=-amigaos
- ;;
- *-dg)
- os=-dgux
- ;;
- *-dolphin)
- os=-sysv3
- ;;
- m68k-ccur)
- os=-rtu
- ;;
- m88k-omron*)
- os=-luna
- ;;
- *-next )
- os=-nextstep
- ;;
- *-sequent)
- os=-ptx
- ;;
- *-crds)
- os=-unos
- ;;
- *-ns)
- os=-genix
- ;;
- i370-*)
- os=-mvs
- ;;
- *-next)
- os=-nextstep3
- ;;
- *-gould)
- os=-sysv
- ;;
- *-highlevel)
- os=-bsd
- ;;
- *-encore)
- os=-bsd
- ;;
- *-sgi)
- os=-irix
- ;;
- *-siemens)
- os=-sysv4
- ;;
- *-masscomp)
- os=-rtu
- ;;
- f301-fujitsu)
- os=-uxpv
- ;;
- *-rom68k)
- os=-coff
- ;;
- *-*bug)
- os=-coff
- ;;
- *-apple)
- os=-macos
- ;;
- *-atari*)
- os=-mint
- ;;
- *)
- os=-none
- ;;
-esac
-fi
-
-# Here we handle the case where we know the os, and the CPU type, but not the
-# manufacturer. We pick the logical manufacturer.
-vendor=unknown
-case $basic_machine in
- *-unknown)
- case $os in
- -riscix*)
- vendor=acorn
- ;;
- -sunos*)
- vendor=sun
- ;;
- -aix*)
- vendor=ibm
- ;;
- -beos*)
- vendor=be
- ;;
- -hpux*)
- vendor=hp
- ;;
- -mpeix*)
- vendor=hp
- ;;
- -hiux*)
- vendor=hitachi
- ;;
- -unos*)
- vendor=crds
- ;;
- -dgux*)
- vendor=dg
- ;;
- -luna*)
- vendor=omron
- ;;
- -genix*)
- vendor=ns
- ;;
- -mvs* | -opened*)
- vendor=ibm
- ;;
- -ptx*)
- vendor=sequent
- ;;
- -vxsim* | -vxworks*)
- vendor=wrs
- ;;
- -aux*)
- vendor=apple
- ;;
- -hms*)
- vendor=hitachi
- ;;
- -mpw* | -macos*)
- vendor=apple
- ;;
- -*mint | -*MiNT)
- vendor=atari
- ;;
- esac
- basic_machine=`echo $basic_machine | sed "s/unknown/$vendor/"`
- ;;
-esac
-
-echo $basic_machine$os
diff --git a/pcre/configure b/pcre/configure
deleted file mode 100644
index fbd3831e..00000000
--- a/pcre/configure
+++ /dev/null
@@ -1,1568 +0,0 @@
-#! /bin/sh
-
-# Guess values for system-dependent variables and create Makefiles.
-# Generated automatically using autoconf version 2.13
-# Copyright (C) 1992, 93, 94, 95, 96 Free Software Foundation, Inc.
-#
-# This configure script is free software; the Free Software Foundation
-# gives unlimited permission to copy, distribute and modify it.
-
-# Defaults:
-ac_help=
-ac_default_prefix=/usr/local
-# Any additions from configure.in:
-ac_help="$ac_help
- --disable-shared build PCRE as a static library"
-ac_help="$ac_help
- --enable-utf8 enable UTF8 support (incomplete)"
-
-# Initialize some variables set by options.
-# The variables have the same names as the options, with
-# dashes changed to underlines.
-build=NONE
-cache_file=./config.cache
-exec_prefix=NONE
-host=NONE
-no_create=
-nonopt=NONE
-no_recursion=
-prefix=NONE
-program_prefix=NONE
-program_suffix=NONE
-program_transform_name=s,x,x,
-silent=
-site=
-srcdir=
-target=NONE
-verbose=
-x_includes=NONE
-x_libraries=NONE
-bindir='${exec_prefix}/bin'
-sbindir='${exec_prefix}/sbin'
-libexecdir='${exec_prefix}/libexec'
-datadir='${prefix}/share'
-sysconfdir='${prefix}/etc'
-sharedstatedir='${prefix}/com'
-localstatedir='${prefix}/var'
-libdir='${exec_prefix}/lib'
-includedir='${prefix}/include'
-oldincludedir='/usr/include'
-infodir='${prefix}/info'
-mandir='${prefix}/man'
-
-# Initialize some other variables.
-subdirs=
-MFLAGS= MAKEFLAGS=
-SHELL=${CONFIG_SHELL-/bin/sh}
-# Maximum number of lines to put in a shell here document.
-ac_max_here_lines=12
-
-ac_prev=
-for ac_option
-do
-
- # If the previous option needs an argument, assign it.
- if test -n "$ac_prev"; then
- eval "$ac_prev=\$ac_option"
- ac_prev=
- continue
- fi
-
- case "$ac_option" in
- -*=*) ac_optarg=`echo "$ac_option" | sed 's/[-_a-zA-Z0-9]*=//'` ;;
- *) ac_optarg= ;;
- esac
-
- # Accept the important Cygnus configure options, so we can diagnose typos.
-
- case "$ac_option" in
-
- -bindir | --bindir | --bindi | --bind | --bin | --bi)
- ac_prev=bindir ;;
- -bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*)
- bindir="$ac_optarg" ;;
-
- -build | --build | --buil | --bui | --bu)
- ac_prev=build ;;
- -build=* | --build=* | --buil=* | --bui=* | --bu=*)
- build="$ac_optarg" ;;
-
- -cache-file | --cache-file | --cache-fil | --cache-fi \
- | --cache-f | --cache- | --cache | --cach | --cac | --ca | --c)
- ac_prev=cache_file ;;
- -cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \
- | --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*)
- cache_file="$ac_optarg" ;;
-
- -datadir | --datadir | --datadi | --datad | --data | --dat | --da)
- ac_prev=datadir ;;
- -datadir=* | --datadir=* | --datadi=* | --datad=* | --data=* | --dat=* \
- | --da=*)
- datadir="$ac_optarg" ;;
-
- -disable-* | --disable-*)
- ac_feature=`echo $ac_option|sed -e 's/-*disable-//'`
- # Reject names that are not valid shell variable names.
- if test -n "`echo $ac_feature| sed 's/[-a-zA-Z0-9_]//g'`"; then
- { echo "configure: error: $ac_feature: invalid feature name" 1>&2; exit 1; }
- fi
- ac_feature=`echo $ac_feature| sed 's/-/_/g'`
- eval "enable_${ac_feature}=no" ;;
-
- -enable-* | --enable-*)
- ac_feature=`echo $ac_option|sed -e 's/-*enable-//' -e 's/=.*//'`
- # Reject names that are not valid shell variable names.
- if test -n "`echo $ac_feature| sed 's/[-_a-zA-Z0-9]//g'`"; then
- { echo "configure: error: $ac_feature: invalid feature name" 1>&2; exit 1; }
- fi
- ac_feature=`echo $ac_feature| sed 's/-/_/g'`
- case "$ac_option" in
- *=*) ;;
- *) ac_optarg=yes ;;
- esac
- eval "enable_${ac_feature}='$ac_optarg'" ;;
-
- -exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \
- | --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \
- | --exec | --exe | --ex)
- ac_prev=exec_prefix ;;
- -exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \
- | --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \
- | --exec=* | --exe=* | --ex=*)
- exec_prefix="$ac_optarg" ;;
-
- -gas | --gas | --ga | --g)
- # Obsolete; use --with-gas.
- with_gas=yes ;;
-
- -help | --help | --hel | --he)
- # Omit some internal or obsolete options to make the list less imposing.
- # The list generated by autoconf has been trimmed to remove many
- # options that are totally irrelevant to PCRE (e.g. relating to X),
- # or are not supported by its Makefile.
- # The list generated by autoconf has been trimmed to remove many
- # options that are totally irrelevant to PCRE (e.g. relating to X),
- # or are not supported by its Makefile.
- # The list generated by autoconf has been trimmed to remove many
- # options that are totally irrelevant to PCRE (e.g. relating to X),
- # or are not supported by its Makefile.
- # This message is too long to be a string in the A/UX 3.1 sh.
- cat << EOF
-Usage: ./configure [options]
-Options: [defaults in brackets after descriptions]
-Configuration:
- --cache-file=FILE cache test results in FILE
- --help print this message
- --no-create do not create output files
- --quiet, --silent do not print \`checking...' messages
- --version print the version of autoconf that created configure
-Directory and file names:
- --prefix=PREFIX install architecture-independent files in PREFIX
- [$ac_default_prefix]
- --exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
- [same as prefix]
- --bindir=DIR user executables in DIR [EPREFIX/bin]
- --libdir=DIR object code libraries in DIR [EPREFIX/lib]
- --includedir=DIR C header files in DIR [PREFIX/include]
- --mandir=DIR man documentation in DIR [PREFIX/man]
-EOF
- cat << EOF
-EOF
- if test -n "$ac_help"; then
- echo "--enable and --with options recognized:$ac_help"
- fi
- exit 0 ;;
-
- -host | --host | --hos | --ho)
- ac_prev=host ;;
- -host=* | --host=* | --hos=* | --ho=*)
- host="$ac_optarg" ;;
-
- -includedir | --includedir | --includedi | --included | --include \
- | --includ | --inclu | --incl | --inc)
- ac_prev=includedir ;;
- -includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \
- | --includ=* | --inclu=* | --incl=* | --inc=*)
- includedir="$ac_optarg" ;;
-
- -infodir | --infodir | --infodi | --infod | --info | --inf)
- ac_prev=infodir ;;
- -infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*)
- infodir="$ac_optarg" ;;
-
- -libdir | --libdir | --libdi | --libd)
- ac_prev=libdir ;;
- -libdir=* | --libdir=* | --libdi=* | --libd=*)
- libdir="$ac_optarg" ;;
-
- -libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \
- | --libexe | --libex | --libe)
- ac_prev=libexecdir ;;
- -libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \
- | --libexe=* | --libex=* | --libe=*)
- libexecdir="$ac_optarg" ;;
-
- -localstatedir | --localstatedir | --localstatedi | --localstated \
- | --localstate | --localstat | --localsta | --localst \
- | --locals | --local | --loca | --loc | --lo)
- ac_prev=localstatedir ;;
- -localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \
- | --localstate=* | --localstat=* | --localsta=* | --localst=* \
- | --locals=* | --local=* | --loca=* | --loc=* | --lo=*)
- localstatedir="$ac_optarg" ;;
-
- -mandir | --mandir | --mandi | --mand | --man | --ma | --m)
- ac_prev=mandir ;;
- -mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*)
- mandir="$ac_optarg" ;;
-
- -nfp | --nfp | --nf)
- # Obsolete; use --without-fp.
- with_fp=no ;;
-
- -no-create | --no-create | --no-creat | --no-crea | --no-cre \
- | --no-cr | --no-c)
- no_create=yes ;;
-
- -no-recursion | --no-recursion | --no-recursio | --no-recursi \
- | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r)
- no_recursion=yes ;;
-
- -oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \
- | --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \
- | --oldin | --oldi | --old | --ol | --o)
- ac_prev=oldincludedir ;;
- -oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \
- | --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \
- | --oldin=* | --oldi=* | --old=* | --ol=* | --o=*)
- oldincludedir="$ac_optarg" ;;
-
- -prefix | --prefix | --prefi | --pref | --pre | --pr | --p)
- ac_prev=prefix ;;
- -prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*)
- prefix="$ac_optarg" ;;
-
- -program-prefix | --program-prefix | --program-prefi | --program-pref \
- | --program-pre | --program-pr | --program-p)
- ac_prev=program_prefix ;;
- -program-prefix=* | --program-prefix=* | --program-prefi=* \
- | --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*)
- program_prefix="$ac_optarg" ;;
-
- -program-suffix | --program-suffix | --program-suffi | --program-suff \
- | --program-suf | --program-su | --program-s)
- ac_prev=program_suffix ;;
- -program-suffix=* | --program-suffix=* | --program-suffi=* \
- | --program-suff=* | --program-suf=* | --program-su=* | --program-s=*)
- program_suffix="$ac_optarg" ;;
-
- -program-transform-name | --program-transform-name \
- | --program-transform-nam | --program-transform-na \
- | --program-transform-n | --program-transform- \
- | --program-transform | --program-transfor \
- | --program-transfo | --program-transf \
- | --program-trans | --program-tran \
- | --progr-tra | --program-tr | --program-t)
- ac_prev=program_transform_name ;;
- -program-transform-name=* | --program-transform-name=* \
- | --program-transform-nam=* | --program-transform-na=* \
- | --program-transform-n=* | --program-transform-=* \
- | --program-transform=* | --program-transfor=* \
- | --program-transfo=* | --program-transf=* \
- | --program-trans=* | --program-tran=* \
- | --progr-tra=* | --program-tr=* | --program-t=*)
- program_transform_name="$ac_optarg" ;;
-
- -q | -quiet | --quiet | --quie | --qui | --qu | --q \
- | -silent | --silent | --silen | --sile | --sil)
- silent=yes ;;
-
- -sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb)
- ac_prev=sbindir ;;
- -sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \
- | --sbi=* | --sb=*)
- sbindir="$ac_optarg" ;;
-
- -sharedstatedir | --sharedstatedir | --sharedstatedi \
- | --sharedstated | --sharedstate | --sharedstat | --sharedsta \
- | --sharedst | --shareds | --shared | --share | --shar \
- | --sha | --sh)
- ac_prev=sharedstatedir ;;
- -sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \
- | --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \
- | --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \
- | --sha=* | --sh=*)
- sharedstatedir="$ac_optarg" ;;
-
- -site | --site | --sit)
- ac_prev=site ;;
- -site=* | --site=* | --sit=*)
- site="$ac_optarg" ;;
-
- -srcdir | --srcdir | --srcdi | --srcd | --src | --sr)
- ac_prev=srcdir ;;
- -srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*)
- srcdir="$ac_optarg" ;;
-
- -sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \
- | --syscon | --sysco | --sysc | --sys | --sy)
- ac_prev=sysconfdir ;;
- -sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \
- | --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*)
- sysconfdir="$ac_optarg" ;;
-
- -target | --target | --targe | --targ | --tar | --ta | --t)
- ac_prev=target ;;
- -target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*)
- target="$ac_optarg" ;;
-
- -v | -verbose | --verbose | --verbos | --verbo | --verb)
- verbose=yes ;;
-
- -version | --version | --versio | --versi | --vers)
- echo "configure generated by autoconf version 2.13"
- exit 0 ;;
-
- -with-* | --with-*)
- ac_package=`echo $ac_option|sed -e 's/-*with-//' -e 's/=.*//'`
- # Reject names that are not valid shell variable names.
- if test -n "`echo $ac_package| sed 's/[-_a-zA-Z0-9]//g'`"; then
- { echo "configure: error: $ac_package: invalid package name" 1>&2; exit 1; }
- fi
- ac_package=`echo $ac_package| sed 's/-/_/g'`
- case "$ac_option" in
- *=*) ;;
- *) ac_optarg=yes ;;
- esac
- eval "with_${ac_package}='$ac_optarg'" ;;
-
- -without-* | --without-*)
- ac_package=`echo $ac_option|sed -e 's/-*without-//'`
- # Reject names that are not valid shell variable names.
- if test -n "`echo $ac_package| sed 's/[-a-zA-Z0-9_]//g'`"; then
- { echo "configure: error: $ac_package: invalid package name" 1>&2; exit 1; }
- fi
- ac_package=`echo $ac_package| sed 's/-/_/g'`
- eval "with_${ac_package}=no" ;;
-
- --x)
- # Obsolete; use --with-x.
- with_x=yes ;;
-
- -x-includes | --x-includes | --x-include | --x-includ | --x-inclu \
- | --x-incl | --x-inc | --x-in | --x-i)
- ac_prev=x_includes ;;
- -x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \
- | --x-incl=* | --x-inc=* | --x-in=* | --x-i=*)
- x_includes="$ac_optarg" ;;
-
- -x-libraries | --x-libraries | --x-librarie | --x-librari \
- | --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l)
- ac_prev=x_libraries ;;
- -x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \
- | --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*)
- x_libraries="$ac_optarg" ;;
-
- -*) { echo "configure: error: $ac_option: invalid option; use --help to show usage" 1>&2; exit 1; }
- ;;
-
- *)
- if test -n "`echo $ac_option| sed 's/[-a-z0-9.]//g'`"; then
- echo "configure: warning: $ac_option: invalid host type" 1>&2
- fi
- if test "x$nonopt" != xNONE; then
- { echo "configure: error: can only configure for one host and one target at a time" 1>&2; exit 1; }
- fi
- nonopt="$ac_option"
- ;;
-
- esac
-done
-
-if test -n "$ac_prev"; then
- { echo "configure: error: missing argument to --`echo $ac_prev | sed 's/_/-/g'`" 1>&2; exit 1; }
-fi
-
-trap 'rm -fr conftest* confdefs* core core.* *.core $ac_clean_files; exit 1' 1 2 15
-
-# File descriptor usage:
-# 0 standard input
-# 1 file creation
-# 2 errors and warnings
-# 3 some systems may open it to /dev/tty
-# 4 used on the Kubota Titan
-# 6 checking for... messages and results
-# 5 compiler messages saved in config.log
-if test "$silent" = yes; then
- exec 6>/dev/null
-else
- exec 6>&1
-fi
-exec 5>./config.log
-
-echo "\
-This file contains any messages produced by compilers while
-running configure, to aid debugging if configure makes a mistake.
-" 1>&5
-
-# Strip out --no-create and --no-recursion so they do not pile up.
-# Also quote any args containing shell metacharacters.
-ac_configure_args=
-for ac_arg
-do
- case "$ac_arg" in
- -no-create | --no-create | --no-creat | --no-crea | --no-cre \
- | --no-cr | --no-c) ;;
- -no-recursion | --no-recursion | --no-recursio | --no-recursi \
- | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r) ;;
- *" "*|*" "*|*[\[\]\~\#\$\^\&\*\(\)\{\}\\\|\;\<\>\?]*)
- ac_configure_args="$ac_configure_args '$ac_arg'" ;;
- *) ac_configure_args="$ac_configure_args $ac_arg" ;;
- esac
-done
-
-# NLS nuisances.
-# Only set these to C if already set. These must not be set unconditionally
-# because not all systems understand e.g. LANG=C (notably SCO).
-# Fixing LC_MESSAGES prevents Solaris sh from translating var values in `set'!
-# Non-C LC_CTYPE values break the ctype check.
-if test "${LANG+set}" = set; then LANG=C; export LANG; fi
-if test "${LC_ALL+set}" = set; then LC_ALL=C; export LC_ALL; fi
-if test "${LC_MESSAGES+set}" = set; then LC_MESSAGES=C; export LC_MESSAGES; fi
-if test "${LC_CTYPE+set}" = set; then LC_CTYPE=C; export LC_CTYPE; fi
-
-# confdefs.h avoids OS command line length limits that DEFS can exceed.
-rm -rf conftest* confdefs.h
-# AIX cpp loses on an empty file, so make sure it contains at least a newline.
-echo > confdefs.h
-
-# A filename unique to this package, relative to the directory that
-# configure is in, which we can look for to find out if srcdir is correct.
-ac_unique_file=dftables.c
-
-# Find the source files, if location was not specified.
-if test -z "$srcdir"; then
- ac_srcdir_defaulted=yes
- # Try the directory containing this script, then its parent.
- ac_prog=$0
- ac_confdir=`echo $ac_prog|sed 's%/[^/][^/]*$%%'`
- test "x$ac_confdir" = "x$ac_prog" && ac_confdir=.
- srcdir=$ac_confdir
- if test ! -r $srcdir/$ac_unique_file; then
- srcdir=..
- fi
-else
- ac_srcdir_defaulted=no
-fi
-if test ! -r $srcdir/$ac_unique_file; then
- if test "$ac_srcdir_defaulted" = yes; then
- { echo "configure: error: can not find sources in $ac_confdir or .." 1>&2; exit 1; }
- else
- { echo "configure: error: can not find sources in $srcdir" 1>&2; exit 1; }
- fi
-fi
-srcdir=`echo "${srcdir}" | sed 's%\([^/]\)/*$%\1%'`
-
-# Prefer explicitly selected file to automatically selected ones.
-if test -z "$CONFIG_SITE"; then
- if test "x$prefix" != xNONE; then
- CONFIG_SITE="$prefix/share/config.site $prefix/etc/config.site"
- else
- CONFIG_SITE="$ac_default_prefix/share/config.site $ac_default_prefix/etc/config.site"
- fi
-fi
-for ac_site_file in $CONFIG_SITE; do
- if test -r "$ac_site_file"; then
- echo "loading site script $ac_site_file"
- . "$ac_site_file"
- fi
-done
-
-if test -r "$cache_file"; then
- echo "loading cache $cache_file"
- . $cache_file
-else
- echo "creating cache $cache_file"
- > $cache_file
-fi
-
-ac_ext=c
-# CFLAGS is not in ac_cpp because -g, -O, etc. are not valid cpp options.
-ac_cpp='$CPP $CPPFLAGS'
-ac_compile='${CC-cc} -c $CFLAGS $CPPFLAGS conftest.$ac_ext 1>&5'
-ac_link='${CC-cc} -o conftest${ac_exeext} $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS 1>&5'
-cross_compiling=$ac_cv_prog_cc_cross
-
-ac_exeext=
-ac_objext=o
-if (echo "testing\c"; echo 1,2,3) | grep c >/dev/null; then
- # Stardent Vistra SVR4 grep lacks -e, says ghazi@caip.rutgers.edu.
- if (echo -n testing; echo 1,2,3) | sed s/-n/xn/ | grep xn >/dev/null; then
- ac_n= ac_c='
-' ac_t=' '
- else
- ac_n=-n ac_c= ac_t=
- fi
-else
- ac_n= ac_c='\c' ac_t=
-fi
-
-
-
-
-
-
-PCRE_MAJOR=3
-PCRE_MINOR=4
-PCRE_DATE=22-Aug-2000
-PCRE_VERSION=${PCRE_MAJOR}.${PCRE_MINOR}
-
-
-PCRE_LIB_VERSION=0:1:0
-PCRE_POSIXLIB_VERSION=0:0:0
-
-
-# Extract the first word of "gcc", so it can be a program name with args.
-set dummy gcc; ac_word=$2
-echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:546: checking for $ac_word" >&5
-if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- if test -n "$CC"; then
- ac_cv_prog_CC="$CC" # Let the user override the test.
-else
- IFS="${IFS= }"; ac_save_ifs="$IFS"; IFS=":"
- ac_dummy="$PATH"
- for ac_dir in $ac_dummy; do
- test -z "$ac_dir" && ac_dir=.
- if test -f $ac_dir/$ac_word; then
- ac_cv_prog_CC="gcc"
- break
- fi
- done
- IFS="$ac_save_ifs"
-fi
-fi
-CC="$ac_cv_prog_CC"
-if test -n "$CC"; then
- echo "$ac_t""$CC" 1>&6
-else
- echo "$ac_t""no" 1>&6
-fi
-
-if test -z "$CC"; then
- # Extract the first word of "cc", so it can be a program name with args.
-set dummy cc; ac_word=$2
-echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:576: checking for $ac_word" >&5
-if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- if test -n "$CC"; then
- ac_cv_prog_CC="$CC" # Let the user override the test.
-else
- IFS="${IFS= }"; ac_save_ifs="$IFS"; IFS=":"
- ac_prog_rejected=no
- ac_dummy="$PATH"
- for ac_dir in $ac_dummy; do
- test -z "$ac_dir" && ac_dir=.
- if test -f $ac_dir/$ac_word; then
- if test "$ac_dir/$ac_word" = "/usr/ucb/cc"; then
- ac_prog_rejected=yes
- continue
- fi
- ac_cv_prog_CC="cc"
- break
- fi
- done
- IFS="$ac_save_ifs"
-if test $ac_prog_rejected = yes; then
- # We found a bogon in the path, so make sure we never use it.
- set dummy $ac_cv_prog_CC
- shift
- if test $# -gt 0; then
- # We chose a different compiler from the bogus one.
- # However, it has the same basename, so the bogon will be chosen
- # first if we set CC to just the basename; use the full file name.
- shift
- set dummy "$ac_dir/$ac_word" "$@"
- shift
- ac_cv_prog_CC="$@"
- fi
-fi
-fi
-fi
-CC="$ac_cv_prog_CC"
-if test -n "$CC"; then
- echo "$ac_t""$CC" 1>&6
-else
- echo "$ac_t""no" 1>&6
-fi
-
- if test -z "$CC"; then
- case "`uname -s`" in
- *win32* | *WIN32*)
- # Extract the first word of "cl", so it can be a program name with args.
-set dummy cl; ac_word=$2
-echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:627: checking for $ac_word" >&5
-if eval "test \"`echo '$''{'ac_cv_prog_CC'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- if test -n "$CC"; then
- ac_cv_prog_CC="$CC" # Let the user override the test.
-else
- IFS="${IFS= }"; ac_save_ifs="$IFS"; IFS=":"
- ac_dummy="$PATH"
- for ac_dir in $ac_dummy; do
- test -z "$ac_dir" && ac_dir=.
- if test -f $ac_dir/$ac_word; then
- ac_cv_prog_CC="cl"
- break
- fi
- done
- IFS="$ac_save_ifs"
-fi
-fi
-CC="$ac_cv_prog_CC"
-if test -n "$CC"; then
- echo "$ac_t""$CC" 1>&6
-else
- echo "$ac_t""no" 1>&6
-fi
- ;;
- esac
- fi
- test -z "$CC" && { echo "configure: error: no acceptable cc found in \$PATH" 1>&2; exit 1; }
-fi
-
-echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works""... $ac_c" 1>&6
-echo "configure:659: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) works" >&5
-
-ac_ext=c
-# CFLAGS is not in ac_cpp because -g, -O, etc. are not valid cpp options.
-ac_cpp='$CPP $CPPFLAGS'
-ac_compile='${CC-cc} -c $CFLAGS $CPPFLAGS conftest.$ac_ext 1>&5'
-ac_link='${CC-cc} -o conftest${ac_exeext} $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS 1>&5'
-cross_compiling=$ac_cv_prog_cc_cross
-
-cat > conftest.$ac_ext << EOF
-
-#line 670 "configure"
-#include "confdefs.h"
-
-main(){return(0);}
-EOF
-if { (eval echo configure:675: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then
- ac_cv_prog_cc_works=yes
- # If we can't run a trivial program, we are probably using a cross compiler.
- if (./conftest; exit) 2>/dev/null; then
- ac_cv_prog_cc_cross=no
- else
- ac_cv_prog_cc_cross=yes
- fi
-else
- echo "configure: failed program was:" >&5
- cat conftest.$ac_ext >&5
- ac_cv_prog_cc_works=no
-fi
-rm -fr conftest*
-ac_ext=c
-# CFLAGS is not in ac_cpp because -g, -O, etc. are not valid cpp options.
-ac_cpp='$CPP $CPPFLAGS'
-ac_compile='${CC-cc} -c $CFLAGS $CPPFLAGS conftest.$ac_ext 1>&5'
-ac_link='${CC-cc} -o conftest${ac_exeext} $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS 1>&5'
-cross_compiling=$ac_cv_prog_cc_cross
-
-echo "$ac_t""$ac_cv_prog_cc_works" 1>&6
-if test $ac_cv_prog_cc_works = no; then
- { echo "configure: error: installation or configuration problem: C compiler cannot create executables." 1>&2; exit 1; }
-fi
-echo $ac_n "checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler""... $ac_c" 1>&6
-echo "configure:701: checking whether the C compiler ($CC $CFLAGS $LDFLAGS) is a cross-compiler" >&5
-echo "$ac_t""$ac_cv_prog_cc_cross" 1>&6
-cross_compiling=$ac_cv_prog_cc_cross
-
-echo $ac_n "checking whether we are using GNU C""... $ac_c" 1>&6
-echo "configure:706: checking whether we are using GNU C" >&5
-if eval "test \"`echo '$''{'ac_cv_prog_gcc'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- cat > conftest.c <&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
- ac_cv_prog_gcc=yes
-else
- ac_cv_prog_gcc=no
-fi
-fi
-
-echo "$ac_t""$ac_cv_prog_gcc" 1>&6
-
-if test $ac_cv_prog_gcc = yes; then
- GCC=yes
-else
- GCC=
-fi
-
-ac_test_CFLAGS="${CFLAGS+set}"
-ac_save_CFLAGS="$CFLAGS"
-CFLAGS=
-echo $ac_n "checking whether ${CC-cc} accepts -g""... $ac_c" 1>&6
-echo "configure:734: checking whether ${CC-cc} accepts -g" >&5
-if eval "test \"`echo '$''{'ac_cv_prog_cc_g'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- echo 'void f(){}' > conftest.c
-if test -z "`${CC-cc} -g -c conftest.c 2>&1`"; then
- ac_cv_prog_cc_g=yes
-else
- ac_cv_prog_cc_g=no
-fi
-rm -f conftest*
-
-fi
-
-echo "$ac_t""$ac_cv_prog_cc_g" 1>&6
-if test "$ac_test_CFLAGS" = set; then
- CFLAGS="$ac_save_CFLAGS"
-elif test $ac_cv_prog_cc_g = yes; then
- if test "$GCC" = yes; then
- CFLAGS="-g -O2"
- else
- CFLAGS="-g"
- fi
-else
- if test "$GCC" = yes; then
- CFLAGS="-O2"
- else
- CFLAGS=
- fi
-fi
-
-# Extract the first word of "ranlib", so it can be a program name with args.
-set dummy ranlib; ac_word=$2
-echo $ac_n "checking for $ac_word""... $ac_c" 1>&6
-echo "configure:768: checking for $ac_word" >&5
-if eval "test \"`echo '$''{'ac_cv_prog_RANLIB'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- if test -n "$RANLIB"; then
- ac_cv_prog_RANLIB="$RANLIB" # Let the user override the test.
-else
- IFS="${IFS= }"; ac_save_ifs="$IFS"; IFS=":"
- ac_dummy="$PATH"
- for ac_dir in $ac_dummy; do
- test -z "$ac_dir" && ac_dir=.
- if test -f $ac_dir/$ac_word; then
- ac_cv_prog_RANLIB="ranlib"
- break
- fi
- done
- IFS="$ac_save_ifs"
- test -z "$ac_cv_prog_RANLIB" && ac_cv_prog_RANLIB=":"
-fi
-fi
-RANLIB="$ac_cv_prog_RANLIB"
-if test -n "$RANLIB"; then
- echo "$ac_t""$RANLIB" 1>&6
-else
- echo "$ac_t""no" 1>&6
-fi
-
-
-
-echo $ac_n "checking how to run the C preprocessor""... $ac_c" 1>&6
-echo "configure:798: checking how to run the C preprocessor" >&5
-# On Suns, sometimes $CPP names a directory.
-if test -n "$CPP" && test -d "$CPP"; then
- CPP=
-fi
-if test -z "$CPP"; then
-if eval "test \"`echo '$''{'ac_cv_prog_CPP'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- # This must be in double quotes, not single quotes, because CPP may get
- # substituted into the Makefile and "${CC-cc}" will confuse make.
- CPP="${CC-cc} -E"
- # On the NeXT, cc -E runs the code through the compiler's parser,
- # not just through cpp.
- cat > conftest.$ac_ext <
-Syntax Error
-EOF
-ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:819: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
-ac_err=`grep -v '^ *+' conftest.out | grep -v "^conftest.${ac_ext}\$"`
-if test -z "$ac_err"; then
- :
-else
- echo "$ac_err" >&5
- echo "configure: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- CPP="${CC-cc} -E -traditional-cpp"
- cat > conftest.$ac_ext <
-Syntax Error
-EOF
-ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:836: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
-ac_err=`grep -v '^ *+' conftest.out | grep -v "^conftest.${ac_ext}\$"`
-if test -z "$ac_err"; then
- :
-else
- echo "$ac_err" >&5
- echo "configure: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- CPP="${CC-cc} -nologo -E"
- cat > conftest.$ac_ext <
-Syntax Error
-EOF
-ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:853: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
-ac_err=`grep -v '^ *+' conftest.out | grep -v "^conftest.${ac_ext}\$"`
-if test -z "$ac_err"; then
- :
-else
- echo "$ac_err" >&5
- echo "configure: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- CPP=/lib/cpp
-fi
-rm -f conftest*
-fi
-rm -f conftest*
-fi
-rm -f conftest*
- ac_cv_prog_CPP="$CPP"
-fi
- CPP="$ac_cv_prog_CPP"
-else
- ac_cv_prog_CPP="$CPP"
-fi
-echo "$ac_t""$CPP" 1>&6
-
-echo $ac_n "checking for ANSI C header files""... $ac_c" 1>&6
-echo "configure:878: checking for ANSI C header files" >&5
-if eval "test \"`echo '$''{'ac_cv_header_stdc'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- cat > conftest.$ac_ext <
-#include
-#include
-#include
-EOF
-ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:891: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
-ac_err=`grep -v '^ *+' conftest.out | grep -v "^conftest.${ac_ext}\$"`
-if test -z "$ac_err"; then
- rm -rf conftest*
- ac_cv_header_stdc=yes
-else
- echo "$ac_err" >&5
- echo "configure: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- ac_cv_header_stdc=no
-fi
-rm -f conftest*
-
-if test $ac_cv_header_stdc = yes; then
- # SunOS 4.x string.h does not declare mem*, contrary to ANSI.
-cat > conftest.$ac_ext <
-EOF
-if (eval "$ac_cpp conftest.$ac_ext") 2>&5 |
- egrep "memchr" >/dev/null 2>&1; then
- :
-else
- rm -rf conftest*
- ac_cv_header_stdc=no
-fi
-rm -f conftest*
-
-fi
-
-if test $ac_cv_header_stdc = yes; then
- # ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI.
-cat > conftest.$ac_ext <
-EOF
-if (eval "$ac_cpp conftest.$ac_ext") 2>&5 |
- egrep "free" >/dev/null 2>&1; then
- :
-else
- rm -rf conftest*
- ac_cv_header_stdc=no
-fi
-rm -f conftest*
-
-fi
-
-if test $ac_cv_header_stdc = yes; then
- # /bin/cc in Irix-4.0.5 gets non-ANSI ctype macros unless using -ansi.
-if test "$cross_compiling" = yes; then
- :
-else
- cat > conftest.$ac_ext <
-#define ISLOWER(c) ('a' <= (c) && (c) <= 'z')
-#define TOUPPER(c) (ISLOWER(c) ? 'A' + ((c) - 'a') : (c))
-#define XOR(e, f) (((e) && !(f)) || (!(e) && (f)))
-int main () { int i; for (i = 0; i < 256; i++)
-if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) exit(2);
-exit (0); }
-
-EOF
-if { (eval echo configure:958: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext} && (./conftest; exit) 2>/dev/null
-then
- :
-else
- echo "configure: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -fr conftest*
- ac_cv_header_stdc=no
-fi
-rm -fr conftest*
-fi
-
-fi
-fi
-
-echo "$ac_t""$ac_cv_header_stdc" 1>&6
-if test $ac_cv_header_stdc = yes; then
- cat >> confdefs.h <<\EOF
-#define STDC_HEADERS 1
-EOF
-
-fi
-
-for ac_hdr in limits.h
-do
-ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'`
-echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6
-echo "configure:985: checking for $ac_hdr" >&5
-if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- cat > conftest.$ac_ext <
-EOF
-ac_try="$ac_cpp conftest.$ac_ext >/dev/null 2>conftest.out"
-{ (eval echo configure:995: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
-ac_err=`grep -v '^ *+' conftest.out | grep -v "^conftest.${ac_ext}\$"`
-if test -z "$ac_err"; then
- rm -rf conftest*
- eval "ac_cv_header_$ac_safe=yes"
-else
- echo "$ac_err" >&5
- echo "configure: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- eval "ac_cv_header_$ac_safe=no"
-fi
-rm -f conftest*
-fi
-if eval "test \"`echo '$ac_cv_header_'$ac_safe`\" = yes"; then
- echo "$ac_t""yes" 1>&6
- ac_tr_hdr=HAVE_`echo $ac_hdr | sed 'y%abcdefghijklmnopqrstuvwxyz./-%ABCDEFGHIJKLMNOPQRSTUVWXYZ___%'`
- cat >> confdefs.h <&6
-fi
-done
-
-
-
-echo $ac_n "checking for working const""... $ac_c" 1>&6
-echo "configure:1024: checking for working const" >&5
-if eval "test \"`echo '$''{'ac_cv_c_const'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- cat > conftest.$ac_ext <j = 5;
-}
-{ /* ULTRIX-32 V3.1 (Rev 9) vcc rejects this */
- const int foo = 10;
-}
-
-; return 0; }
-EOF
-if { (eval echo configure:1078: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; }; then
- rm -rf conftest*
- ac_cv_c_const=yes
-else
- echo "configure: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- ac_cv_c_const=no
-fi
-rm -f conftest*
-fi
-
-echo "$ac_t""$ac_cv_c_const" 1>&6
-if test $ac_cv_c_const = no; then
- cat >> confdefs.h <<\EOF
-#define const
-EOF
-
-fi
-
-echo $ac_n "checking for size_t""... $ac_c" 1>&6
-echo "configure:1099: checking for size_t" >&5
-if eval "test \"`echo '$''{'ac_cv_type_size_t'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- cat > conftest.$ac_ext <
-#if STDC_HEADERS
-#include
-#include
-#endif
-EOF
-if (eval "$ac_cpp conftest.$ac_ext") 2>&5 |
- egrep "(^|[^a-zA-Z_0-9])size_t[^a-zA-Z_0-9]" >/dev/null 2>&1; then
- rm -rf conftest*
- ac_cv_type_size_t=yes
-else
- rm -rf conftest*
- ac_cv_type_size_t=no
-fi
-rm -f conftest*
-
-fi
-echo "$ac_t""$ac_cv_type_size_t" 1>&6
-if test $ac_cv_type_size_t = no; then
- cat >> confdefs.h <<\EOF
-#define size_t unsigned
-EOF
-
-fi
-
-
-
-for ac_func in bcopy memmove strerror
-do
-echo $ac_n "checking for $ac_func""... $ac_c" 1>&6
-echo "configure:1136: checking for $ac_func" >&5
-if eval "test \"`echo '$''{'ac_cv_func_$ac_func'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- cat > conftest.$ac_ext <
-/* Override any gcc2 internal prototype to avoid an error. */
-/* We use char because int might match the return type of a gcc2
- builtin and then its argument prototype would still apply. */
-char $ac_func();
-
-int main() {
-
-/* The GNU C library defines this for functions which it implements
- to always fail with ENOSYS. Some functions are actually named
- something starting with __ and the normal name is an alias. */
-#if defined (__stub_$ac_func) || defined (__stub___$ac_func)
-choke me
-#else
-$ac_func();
-#endif
-
-; return 0; }
-EOF
-if { (eval echo configure:1164: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then
- rm -rf conftest*
- eval "ac_cv_func_$ac_func=yes"
-else
- echo "configure: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- eval "ac_cv_func_$ac_func=no"
-fi
-rm -f conftest*
-fi
-
-if eval "test \"`echo '$ac_cv_func_'$ac_func`\" = yes"; then
- echo "$ac_t""yes" 1>&6
- ac_tr_func=HAVE_`echo $ac_func | tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'`
- cat >> confdefs.h <&6
-fi
-done
-
-
-
-LIBTOOL=./libtool
-LIBSUFFIX=la
-# Check whether --enable-shared or --disable-shared was given.
-if test "${enable_shared+set}" = set; then
- enableval="$enable_shared"
- if test "$enableval" = "no"; then
- LIBTOOL=
- LIBSUFFIX=a
-fi
-
-fi
-
-
-
-# Check whether --enable-utf8 or --disable-utf8 was given.
-if test "${enable_utf8+set}" = set; then
- enableval="$enable_utf8"
- if test "$enableval" = "yes"; then
- UTF8=-DSUPPORT_UTF8
-fi
-
-fi
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-trap '' 1 2 15
-cat > confcache <<\EOF
-# This file is a shell script that caches the results of configure
-# tests run on this system so they can be shared between configure
-# scripts and configure runs. It is not useful on other systems.
-# If it contains results you don't want to keep, you may remove or edit it.
-#
-# By default, configure uses ./config.cache as the cache file,
-# creating it if it does not exist already. You can give configure
-# the --cache-file=FILE option to use a different cache file; that is
-# what configure does when it calls configure scripts in
-# subdirectories, so they share the cache.
-# Giving --cache-file=/dev/null disables caching, for debugging configure.
-# config.status only pays attention to the cache file if you give it the
-# --recheck option to rerun configure.
-#
-EOF
-# The following way of writing the cache mishandles newlines in values,
-# but we know of no workaround that is simple, portable, and efficient.
-# So, don't put newlines in cache variables' values.
-# Ultrix sh set writes to stderr and can't be redirected directly,
-# and sets the high bit in the cache file unless we assign to the vars.
-(set) 2>&1 |
- case `(ac_space=' '; set | grep ac_space) 2>&1` in
- *ac_space=\ *)
- # `set' does not quote correctly, so add quotes (double-quote substitution
- # turns \\\\ into \\, and sed turns \\ into \).
- sed -n \
- -e "s/'/'\\\\''/g" \
- -e "s/^\\([a-zA-Z0-9_]*_cv_[a-zA-Z0-9_]*\\)=\\(.*\\)/\\1=\${\\1='\\2'}/p"
- ;;
- *)
- # `set' quotes correctly as required by POSIX, so do not add quotes.
- sed -n -e 's/^\([a-zA-Z0-9_]*_cv_[a-zA-Z0-9_]*\)=\(.*\)/\1=${\1=\2}/p'
- ;;
- esac >> confcache
-if cmp -s $cache_file confcache; then
- :
-else
- if test -w $cache_file; then
- echo "updating cache $cache_file"
- cat confcache > $cache_file
- else
- echo "not updating unwritable cache $cache_file"
- fi
-fi
-rm -f confcache
-
-trap 'rm -fr conftest* confdefs* core core.* *.core $ac_clean_files; exit 1' 1 2 15
-
-test "x$prefix" = xNONE && prefix=$ac_default_prefix
-# Let make expand exec_prefix.
-test "x$exec_prefix" = xNONE && exec_prefix='${prefix}'
-
-# Any assignment to VPATH causes Sun make to only execute
-# the first set of double-colon rules, so remove it if not needed.
-# If there is a colon in the path, we need to keep it.
-if test "x$srcdir" = x.; then
- ac_vpsub='/^[ ]*VPATH[ ]*=[^:]*$/d'
-fi
-
-trap 'rm -f $CONFIG_STATUS conftest*; exit 1' 1 2 15
-
-DEFS=-DHAVE_CONFIG_H
-
-# Without the "./", some shells look in PATH for config.status.
-: ${CONFIG_STATUS=./config.status}
-
-echo creating $CONFIG_STATUS
-rm -f $CONFIG_STATUS
-cat > $CONFIG_STATUS </dev/null | sed 1q`:
-#
-# $0 $ac_configure_args
-#
-# Compiler output produced by configure, useful for debugging
-# configure, is in ./config.log if it exists.
-
-ac_cs_usage="Usage: $CONFIG_STATUS [--recheck] [--version] [--help]"
-for ac_option
-do
- case "\$ac_option" in
- -recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r)
- echo "running \${CONFIG_SHELL-/bin/sh} $0 $ac_configure_args --no-create --no-recursion"
- exec \${CONFIG_SHELL-/bin/sh} $0 $ac_configure_args --no-create --no-recursion ;;
- -version | --version | --versio | --versi | --vers | --ver | --ve | --v)
- echo "$CONFIG_STATUS generated by autoconf version 2.13"
- exit 0 ;;
- -help | --help | --hel | --he | --h)
- echo "\$ac_cs_usage"; exit 0 ;;
- *) echo "\$ac_cs_usage"; exit 1 ;;
- esac
-done
-
-ac_given_srcdir=$srcdir
-
-trap 'rm -fr `echo "Makefile pcre.h:pcre.in pcre-config:pcre-config.in RunTest:RunTest.in config.h:config.in" | sed "s/:[^ ]*//g"` conftest*; exit 1' 1 2 15
-EOF
-cat >> $CONFIG_STATUS < conftest.subs <<\\CEOF
-$ac_vpsub
-$extrasub
-s%@SHELL@%$SHELL%g
-s%@CFLAGS@%$CFLAGS%g
-s%@CPPFLAGS@%$CPPFLAGS%g
-s%@CXXFLAGS@%$CXXFLAGS%g
-s%@FFLAGS@%$FFLAGS%g
-s%@DEFS@%$DEFS%g
-s%@LDFLAGS@%$LDFLAGS%g
-s%@LIBS@%$LIBS%g
-s%@exec_prefix@%$exec_prefix%g
-s%@prefix@%$prefix%g
-s%@program_transform_name@%$program_transform_name%g
-s%@bindir@%$bindir%g
-s%@sbindir@%$sbindir%g
-s%@libexecdir@%$libexecdir%g
-s%@datadir@%$datadir%g
-s%@sysconfdir@%$sysconfdir%g
-s%@sharedstatedir@%$sharedstatedir%g
-s%@localstatedir@%$localstatedir%g
-s%@libdir@%$libdir%g
-s%@includedir@%$includedir%g
-s%@oldincludedir@%$oldincludedir%g
-s%@infodir@%$infodir%g
-s%@mandir@%$mandir%g
-s%@CC@%$CC%g
-s%@RANLIB@%$RANLIB%g
-s%@CPP@%$CPP%g
-s%@HAVE_MEMMOVE@%$HAVE_MEMMOVE%g
-s%@HAVE_STRERROR@%$HAVE_STRERROR%g
-s%@LIBTOOL@%$LIBTOOL%g
-s%@LIBSUFFIX@%$LIBSUFFIX%g
-s%@UTF8@%$UTF8%g
-s%@PCRE_MAJOR@%$PCRE_MAJOR%g
-s%@PCRE_MINOR@%$PCRE_MINOR%g
-s%@PCRE_DATE@%$PCRE_DATE%g
-s%@PCRE_VERSION@%$PCRE_VERSION%g
-s%@PCRE_LIB_VERSION@%$PCRE_LIB_VERSION%g
-s%@PCRE_POSIXLIB_VERSION@%$PCRE_POSIXLIB_VERSION%g
-
-CEOF
-EOF
-
-cat >> $CONFIG_STATUS <<\EOF
-
-# Split the substitutions into bite-sized pieces for seds with
-# small command number limits, like on Digital OSF/1 and HP-UX.
-ac_max_sed_cmds=90 # Maximum number of lines to put in a sed script.
-ac_file=1 # Number of current file.
-ac_beg=1 # First line for current file.
-ac_end=$ac_max_sed_cmds # Line after last line for current file.
-ac_more_lines=:
-ac_sed_cmds=""
-while $ac_more_lines; do
- if test $ac_beg -gt 1; then
- sed "1,${ac_beg}d; ${ac_end}q" conftest.subs > conftest.s$ac_file
- else
- sed "${ac_end}q" conftest.subs > conftest.s$ac_file
- fi
- if test ! -s conftest.s$ac_file; then
- ac_more_lines=false
- rm -f conftest.s$ac_file
- else
- if test -z "$ac_sed_cmds"; then
- ac_sed_cmds="sed -f conftest.s$ac_file"
- else
- ac_sed_cmds="$ac_sed_cmds | sed -f conftest.s$ac_file"
- fi
- ac_file=`expr $ac_file + 1`
- ac_beg=$ac_end
- ac_end=`expr $ac_end + $ac_max_sed_cmds`
- fi
-done
-if test -z "$ac_sed_cmds"; then
- ac_sed_cmds=cat
-fi
-EOF
-
-cat >> $CONFIG_STATUS <> $CONFIG_STATUS <<\EOF
-for ac_file in .. $CONFIG_FILES; do if test "x$ac_file" != x..; then
- # Support "outfile[:infile[:infile...]]", defaulting infile="outfile.in".
- case "$ac_file" in
- *:*) ac_file_in=`echo "$ac_file"|sed 's%[^:]*:%%'`
- ac_file=`echo "$ac_file"|sed 's%:.*%%'` ;;
- *) ac_file_in="${ac_file}.in" ;;
- esac
-
- # Adjust a relative srcdir, top_srcdir, and INSTALL for subdirectories.
-
- # Remove last slash and all that follows it. Not all systems have dirname.
- ac_dir=`echo $ac_file|sed 's%/[^/][^/]*$%%'`
- if test "$ac_dir" != "$ac_file" && test "$ac_dir" != .; then
- # The file is in a subdirectory.
- test ! -d "$ac_dir" && mkdir "$ac_dir"
- ac_dir_suffix="/`echo $ac_dir|sed 's%^\./%%'`"
- # A "../" for each directory in $ac_dir_suffix.
- ac_dots=`echo $ac_dir_suffix|sed 's%/[^/]*%../%g'`
- else
- ac_dir_suffix= ac_dots=
- fi
-
- case "$ac_given_srcdir" in
- .) srcdir=.
- if test -z "$ac_dots"; then top_srcdir=.
- else top_srcdir=`echo $ac_dots|sed 's%/$%%'`; fi ;;
- /*) srcdir="$ac_given_srcdir$ac_dir_suffix"; top_srcdir="$ac_given_srcdir" ;;
- *) # Relative path.
- srcdir="$ac_dots$ac_given_srcdir$ac_dir_suffix"
- top_srcdir="$ac_dots$ac_given_srcdir" ;;
- esac
-
-
- echo creating "$ac_file"
- rm -f "$ac_file"
- configure_input="Generated automatically from `echo $ac_file_in|sed 's%.*/%%'` by configure."
- case "$ac_file" in
- *Makefile*) ac_comsub="1i\\
-# $configure_input" ;;
- *) ac_comsub= ;;
- esac
-
- ac_file_inputs=`echo $ac_file_in|sed -e "s%^%$ac_given_srcdir/%" -e "s%:% $ac_given_srcdir/%g"`
- sed -e "$ac_comsub
-s%@configure_input@%$configure_input%g
-s%@srcdir@%$srcdir%g
-s%@top_srcdir@%$top_srcdir%g
-" $ac_file_inputs | (eval "$ac_sed_cmds") > $ac_file
-fi; done
-rm -f conftest.s*
-
-# These sed commands are passed to sed as "A NAME B NAME C VALUE D", where
-# NAME is the cpp macro being defined and VALUE is the value it is being given.
-#
-# ac_d sets the value in "#define NAME VALUE" lines.
-ac_dA='s%^\([ ]*\)#\([ ]*define[ ][ ]*\)'
-ac_dB='\([ ][ ]*\)[^ ]*%\1#\2'
-ac_dC='\3'
-ac_dD='%g'
-# ac_u turns "#undef NAME" with trailing blanks into "#define NAME VALUE".
-ac_uA='s%^\([ ]*\)#\([ ]*\)undef\([ ][ ]*\)'
-ac_uB='\([ ]\)%\1#\2define\3'
-ac_uC=' '
-ac_uD='\4%g'
-# ac_e turns "#undef NAME" without trailing blanks into "#define NAME VALUE".
-ac_eA='s%^\([ ]*\)#\([ ]*\)undef\([ ][ ]*\)'
-ac_eB='$%\1#\2define\3'
-ac_eC=' '
-ac_eD='%g'
-
-if test "${CONFIG_HEADERS+set}" != set; then
-EOF
-cat >> $CONFIG_STATUS <> $CONFIG_STATUS <<\EOF
-fi
-for ac_file in .. $CONFIG_HEADERS; do if test "x$ac_file" != x..; then
- # Support "outfile[:infile[:infile...]]", defaulting infile="outfile.in".
- case "$ac_file" in
- *:*) ac_file_in=`echo "$ac_file"|sed 's%[^:]*:%%'`
- ac_file=`echo "$ac_file"|sed 's%:.*%%'` ;;
- *) ac_file_in="${ac_file}.in" ;;
- esac
-
- echo creating $ac_file
-
- rm -f conftest.frag conftest.in conftest.out
- ac_file_inputs=`echo $ac_file_in|sed -e "s%^%$ac_given_srcdir/%" -e "s%:% $ac_given_srcdir/%g"`
- cat $ac_file_inputs > conftest.in
-
-EOF
-
-# Transform confdefs.h into a sed script conftest.vals that substitutes
-# the proper values into config.h.in to produce config.h. And first:
-# Protect against being on the right side of a sed subst in config.status.
-# Protect against being in an unquoted here document in config.status.
-rm -f conftest.vals
-cat > conftest.hdr <<\EOF
-s/[\\&%]/\\&/g
-s%[\\$`]%\\&%g
-s%#define \([A-Za-z_][A-Za-z0-9_]*\) *\(.*\)%${ac_dA}\1${ac_dB}\1${ac_dC}\2${ac_dD}%gp
-s%ac_d%ac_u%gp
-s%ac_u%ac_e%gp
-EOF
-sed -n -f conftest.hdr confdefs.h > conftest.vals
-rm -f conftest.hdr
-
-# This sed command replaces #undef with comments. This is necessary, for
-# example, in the case of _POSIX_SOURCE, which is predefined and required
-# on some systems where configure will not decide to define it.
-cat >> conftest.vals <<\EOF
-s%^[ ]*#[ ]*undef[ ][ ]*[a-zA-Z_][a-zA-Z_0-9]*%/* & */%
-EOF
-
-# Break up conftest.vals because some shells have a limit on
-# the size of here documents, and old seds have small limits too.
-
-rm -f conftest.tail
-while :
-do
- ac_lines=`grep -c . conftest.vals`
- # grep -c gives empty output for an empty file on some AIX systems.
- if test -z "$ac_lines" || test "$ac_lines" -eq 0; then break; fi
- # Write a limited-size here document to conftest.frag.
- echo ' cat > conftest.frag <> $CONFIG_STATUS
- sed ${ac_max_here_lines}q conftest.vals >> $CONFIG_STATUS
- echo 'CEOF
- sed -f conftest.frag conftest.in > conftest.out
- rm -f conftest.in
- mv conftest.out conftest.in
-' >> $CONFIG_STATUS
- sed 1,${ac_max_here_lines}d conftest.vals > conftest.tail
- rm -f conftest.vals
- mv conftest.tail conftest.vals
-done
-rm -f conftest.vals
-
-cat >> $CONFIG_STATUS <<\EOF
- rm -f conftest.frag conftest.h
- echo "/* $ac_file. Generated automatically by configure. */" > conftest.h
- cat conftest.in >> conftest.h
- rm -f conftest.in
- if cmp -s $ac_file conftest.h 2>/dev/null; then
- echo "$ac_file is unchanged"
- rm -f conftest.h
- else
- # Remove last slash and all that follows it. Not all systems have dirname.
- ac_dir=`echo $ac_file|sed 's%/[^/][^/]*$%%'`
- if test "$ac_dir" != "$ac_file" && test "$ac_dir" != .; then
- # The file is in a subdirectory.
- test ! -d "$ac_dir" && mkdir "$ac_dir"
- fi
- rm -f $ac_file
- mv conftest.h $ac_file
- fi
-fi; done
-
-EOF
-cat >> $CONFIG_STATUS <> $CONFIG_STATUS <<\EOF
-chmod a+x RunTest pcre-config
-exit 0
-EOF
-chmod +x $CONFIG_STATUS
-rm -fr confdefs* $ac_clean_files
-test "$no_create" = yes || ${CONFIG_SHELL-/bin/sh} $CONFIG_STATUS || exit 1
-
diff --git a/pcre/configure.in b/pcre/configure.in
deleted file mode 100644
index c98387d2..00000000
--- a/pcre/configure.in
+++ /dev/null
@@ -1,85 +0,0 @@
-dnl Process this file with autoconf to produce a configure script.
-
-dnl This is required at the start; the name is the name of a file
-dnl it should be seeing, to verify it is in the same directory.
-
-AC_INIT(dftables.c)
-
-dnl Arrange to build config.h from config.in. Note that pcre.h is
-dnl built differently, as it is just a "substitution" file.
-dnl Manual says this macro should come right after AC_INIT.
-AC_CONFIG_HEADER(config.h:config.in)
-
-dnl Provide the current PCRE version information. Do not use numbers
-dnl with leading zeros for the minor version, as they end up in a C
-dnl macro, and may be treated as octal constants. Stick to single
-dnl digits for minor numbers less than 10. There are unlikely to be
-dnl that many releases anyway.
-
-PCRE_MAJOR=3
-PCRE_MINOR=4
-PCRE_DATE=22-Aug-2000
-PCRE_VERSION=${PCRE_MAJOR}.${PCRE_MINOR}
-
-dnl Provide versioning information for libtool shared libraries that
-dnl are built by default on Unix systems.
-
-PCRE_LIB_VERSION=0:1:0
-PCRE_POSIXLIB_VERSION=0:0:0
-
-dnl Checks for programs.
-
-AC_PROG_CC
-AC_PROG_RANLIB
-
-dnl Checks for header files.
-
-AC_HEADER_STDC
-AC_CHECK_HEADERS(limits.h)
-
-dnl Checks for typedefs, structures, and compiler characteristics.
-
-AC_C_CONST
-AC_TYPE_SIZE_T
-
-dnl Checks for library functions.
-
-AC_CHECK_FUNCS(bcopy memmove strerror)
-
-dnl Handle --enable-shared-libraries
-
-LIBTOOL=./libtool
-LIBSUFFIX=la
-AC_ARG_ENABLE(shared,
-[ --disable-shared build PCRE as a static library],
-if test "$enableval" = "no"; then
- LIBTOOL=
- LIBSUFFIX=a
-fi
-)
-
-dnl Handle --enable-utf8
-
-AC_ARG_ENABLE(utf8,
-[ --enable-utf8 enable UTF8 support (incomplete)],
-if test "$enableval" = "yes"; then
- UTF8=-DSUPPORT_UTF8
-fi
-)
-
-dnl "Export" these variables
-
-AC_SUBST(HAVE_MEMMOVE)
-AC_SUBST(HAVE_STRERROR)
-AC_SUBST(LIBTOOL)
-AC_SUBST(LIBSUFFIX)
-AC_SUBST(UTF8)
-AC_SUBST(PCRE_MAJOR)
-AC_SUBST(PCRE_MINOR)
-AC_SUBST(PCRE_DATE)
-AC_SUBST(PCRE_VERSION)
-AC_SUBST(PCRE_LIB_VERSION)
-AC_SUBST(PCRE_POSIXLIB_VERSION)
-
-dnl This must be last; it determines what files are written
-AC_OUTPUT(Makefile pcre.h:pcre.in pcre-config:pcre-config.in RunTest:RunTest.in,[chmod a+x RunTest pcre-config])
diff --git a/pcre/dftables.c b/pcre/dftables.c
deleted file mode 100644
index d572dfd3..00000000
--- a/pcre/dftables.c
+++ /dev/null
@@ -1,148 +0,0 @@
-/*************************************************
-* Perl-Compatible Regular Expressions *
-*************************************************/
-
-/*
-PCRE is a library of functions to support regular expressions whose syntax
-and semantics are as close as possible to those of the Perl 5 language.
-
-Written by: Philip Hazel
-
- Copyright (c) 1997-2000 University of Cambridge
-
------------------------------------------------------------------------------
-Permission is granted to anyone to use this software for any purpose on any
-computer system, and to redistribute it freely, subject to the following
-restrictions:
-
-1. This software is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-
-2. The origin of this software must not be misrepresented, either by
- explicit claim or by omission.
-
-3. Altered versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
-
-4. If PCRE is embedded in any software that is released under the GNU
- General Purpose Licence (GPL), then the terms of that licence shall
- supersede any condition above with which it is incompatible.
------------------------------------------------------------------------------
-
-See the file Tech.Notes for some information on the internals.
-*/
-
-
-/* This is a support program to generate the file chartables.c, containing
-character tables of various kinds. They are built according to the default C
-locale and used as the default tables by PCRE. Now that pcre_maketables is
-a function visible to the outside world, we make use of its code from here in
-order to be consistent. */
-
-#include
-#include
-#include
-
-#include "internal.h"
-
-#define DFTABLES /* maketables.c notices this */
-#include "maketables.c"
-
-
-int main(void)
-{
-int i;
-unsigned const char *tables = pcre_maketables();
-
-printf(
- "/*************************************************\n"
- "* Perl-Compatible Regular Expressions *\n"
- "*************************************************/\n\n"
- "/* This file is automatically written by the dftables auxiliary \n"
- "program. If you edit it by hand, you might like to edit the Makefile to \n"
- "prevent its ever being regenerated.\n\n"
- "This file is #included in the compilation of pcre.c to build the default\n"
- "character tables which are used when no tables are passed to the compile\n"
- "function. */\n\n"
- "static unsigned char pcre_default_tables[] = {\n\n"
- "/* This table is a lower casing table. */\n\n");
-
-printf(" ");
-for (i = 0; i < 256; i++)
- {
- if ((i & 7) == 0 && i != 0) printf("\n ");
- printf("%3d", *tables++);
- if (i != 255) printf(",");
- }
-printf(",\n\n");
-
-printf("/* This table is a case flipping table. */\n\n");
-
-printf(" ");
-for (i = 0; i < 256; i++)
- {
- if ((i & 7) == 0 && i != 0) printf("\n ");
- printf("%3d", *tables++);
- if (i != 255) printf(",");
- }
-printf(",\n\n");
-
-printf(
- "/* This table contains bit maps for various character classes.\n"
- "Each map is 32 bytes long and the bits run from the least\n"
- "significant end of each byte. The classes that have their own\n"
- "maps are: space, xdigit, digit, upper, lower, word, graph\n"
- "print, punct, and cntrl. Other classes are built from combinations. */\n\n");
-
-printf(" ");
-for (i = 0; i < cbit_length; i++)
- {
- if ((i & 7) == 0 && i != 0)
- {
- if ((i & 31) == 0) printf("\n");
- printf("\n ");
- }
- printf("0x%02x", *tables++);
- if (i != cbit_length - 1) printf(",");
- }
-printf(",\n\n");
-
-printf(
- "/* This table identifies various classes of character by individual bits:\n"
- " 0x%02x white space character\n"
- " 0x%02x letter\n"
- " 0x%02x decimal digit\n"
- " 0x%02x hexadecimal digit\n"
- " 0x%02x alphanumeric or '_'\n"
- " 0x%02x regular expression metacharacter or binary zero\n*/\n\n",
- ctype_space, ctype_letter, ctype_digit, ctype_xdigit, ctype_word,
- ctype_meta);
-
-printf(" ");
-for (i = 0; i < 256; i++)
- {
- if ((i & 7) == 0 && i != 0)
- {
- printf(" /* ");
- if (isprint(i-8)) printf(" %c -", i-8);
- else printf("%3d-", i-8);
- if (isprint(i-1)) printf(" %c ", i-1);
- else printf("%3d", i-1);
- printf(" */\n ");
- }
- printf("0x%02x", *tables++);
- if (i != 255) printf(",");
- }
-
-printf("};/* ");
-if (isprint(i-8)) printf(" %c -", i-8);
- else printf("%3d-", i-8);
-if (isprint(i-1)) printf(" %c ", i-1);
- else printf("%3d", i-1);
-printf(" */\n\n/* End of chartables.c */\n");
-
-return 0;
-}
-
-/* End of dftables.c */
diff --git a/pcre/dll.mk b/pcre/dll.mk
deleted file mode 100644
index d8b728e5..00000000
--- a/pcre/dll.mk
+++ /dev/null
@@ -1,60 +0,0 @@
-# dll.mk - auxilary Makefile to easy build dll's for mingw32 target
-# ver. 0.6 of 1999-03-25
-#
-# Homepage of this makefile - http://www.is.lg.ua/~paul/devel/
-# Homepage of original mingw32 project -
-# http://www.fu.is.saga-u.ac.jp/~colin/gcc.html
-#
-# How to use:
-# This makefile can:
-# 1. Create automatical .def file from list of objects
-# 2. Create .dll from objects and .def file, either automatical, or your
-# hand-written (maybe) file, which must have same basename as dll
-# WARNING! There MUST be object, which name match dll's name. Make sux.
-# 3. Create import library from .def (as for .dll, only its name required,
-# not dll itself)
-# By convention implibs for dll have .dll.a suffix, e.g. libstuff.dll.a
-# Why not just libstuff.a? 'Cos that's name for static lib, ok?
-# Process divided into 3 phases because:
-# 1. Pre-existent .def possible
-# 2. Generating implib is enough time-consuming
-#
-# Variables:
-# DLL_LDLIBS - libs for linking dll
-# DLL_LDFLAGS - flags for linking dll
-#
-# By using $(DLL_SUFFIX) instead of 'dll', e.g. stuff.$(DLL_SUFFIX)
-# you may help porting makefiles to other platforms
-#
-# Put this file in your make's include path (e.g. main include dir, for
-# more information see include section in make doc). Put in the beginning
-# of your own Makefile line "include dll.mk". Specify dependences, e.g.:
-#
-# Do all stuff in one step
-# libstuff.dll.a: $(OBJECTS) stuff.def
-# stuff.def: $(OBJECTS)
-#
-# Steps separated, pre-provided .def, link with user32
-#
-# DLL_LDLIBS=-luser32
-# stuff.dll: $(OBJECTS)
-# libstuff.dll.a: $(OBJECTS)
-
-
-DLLWRAP=dllwrap
-DLLTOOL=dlltool
-
-DLL_SUFFIX=dll
-
-.SUFFIXES: .o .$(DLL_SUFFIX)
-
-_%.def: %.o
- $(DLLTOOL) --export-all --output-def $@ $^
-
-%.$(DLL_SUFFIX): %.o
- $(DLLWRAP) --dllname $(notdir $@) --driver-name $(CC) --def $*.def -o $@ $(filter %.o,$^) $(DLL_LDFLAGS) $(DLL_LDLIBS)
-
-lib%.$(DLL_SUFFIX).a:%.def
- $(DLLTOOL) --dllname $(notdir $*.dll) --def $< --output-lib $@
-
-# End
diff --git a/pcre/doc/ChangeLog b/pcre/doc/ChangeLog
deleted file mode 100644
index 2133dd76..00000000
--- a/pcre/doc/ChangeLog
+++ /dev/null
@@ -1,655 +0,0 @@
-ChangeLog for PCRE
-------------------
-
-
-Version 3.4 22-Aug-00
----------------------
-
-1. Fixed typo in pcre.h: unsigned const char * changed to const unsigned char *.
-
-2. Diagnose condition (?(0) as an error instead of crashing on matching.
-
-
-Version 3.3 01-Aug-00
----------------------
-
-1. If an octal character was given, but the value was greater than \377, it
-was not getting masked to the least significant bits, as documented. This could
-lead to crashes in some systems.
-
-2. Perl 5.6 (if not earlier versions) accepts classes like [a-\d] and treats
-the hyphen as a literal. PCRE used to give an error; it now behaves like Perl.
-
-3. Added the functions pcre_free_substring() and pcre_free_substring_list().
-These just pass their arguments on to (pcre_free)(), but they are provided
-because some uses of PCRE bind it to non-C systems that can call its functions,
-but cannot call free() or pcre_free() directly.
-
-4. Add "make test" as a synonym for "make check". Corrected some comments in
-the Makefile.
-
-5. Add $(DESTDIR)/ in front of all the paths in the "install" target in the
-Makefile.
-
-6. Changed the name of pgrep to pcregrep, because Solaris has introduced a
-command called pgrep for grepping around the active processes.
-
-7. Added the beginnings of support for UTF-8 character strings.
-
-8. Arranged for the Makefile to pass over the settings of CC, CFLAGS, and
-RANLIB to ./ltconfig so that they are used by libtool. I think these are all
-the relevant ones. (AR is not passed because ./ltconfig does its own figuring
-out for the ar command.)
-
-
-Version 3.2 12-May-00
----------------------
-
-This is purely a bug fixing release.
-
-1. If the pattern /((Z)+|A)*/ was matched agained ZABCDEFG it matched Z instead
-of ZA. This was just one example of several cases that could provoke this bug,
-which was introduced by change 9 of version 2.00. The code for breaking
-infinite loops after an iteration that matches an empty string was't working
-correctly.
-
-2. The pcretest program was not imitating Perl correctly for the pattern /a*/g
-when matched against abbab (for example). After matching an empty string, it
-wasn't forcing anchoring when setting PCRE_NOTEMPTY for the next attempt; this
-caused it to match further down the string than it should.
-
-3. The code contained an inclusion of sys/types.h. It isn't clear why this
-was there because it doesn't seem to be needed, and it causes trouble on some
-systems, as it is not a Standard C header. It has been removed.
-
-4. Made 4 silly changes to the source to avoid stupid compiler warnings that
-were reported on the Macintosh. The changes were from
-
- while ((c = *(++ptr)) != 0 && c != '\n');
-to
- while ((c = *(++ptr)) != 0 && c != '\n') ;
-
-Totally extraordinary, but if that's what it takes...
-
-5. PCRE is being used in one environment where neither memmove() nor bcopy() is
-available. Added HAVE_BCOPY and an autoconf test for it; if neither
-HAVE_MEMMOVE nor HAVE_BCOPY is set, use a built-in emulation function which
-assumes the way PCRE uses memmove() (always moving upwards).
-
-6. PCRE is being used in one environment where strchr() is not available. There
-was only one use in pcre.c, and writing it out to avoid strchr() probably gives
-faster code anyway.
-
-
-Version 3.1 09-Feb-00
----------------------
-
-The only change in this release is the fixing of some bugs in Makefile.in for
-the "install" target:
-
-(1) It was failing to install pcreposix.h.
-
-(2) It was overwriting the pcre.3 man page with the pcreposix.3 man page.
-
-
-Version 3.0 01-Feb-00
----------------------
-
-1. Add support for the /+ modifier to perltest (to output $` like it does in
-pcretest).
-
-2. Add support for the /g modifier to perltest.
-
-3. Fix pcretest so that it behaves even more like Perl for /g when the pattern
-matches null strings.
-
-4. Fix perltest so that it doesn't do unwanted things when fed an empty
-pattern. Perl treats empty patterns specially - it reuses the most recent
-pattern, which is not what we want. Replace // by /(?#)/ in order to avoid this
-effect.
-
-5. The POSIX interface was broken in that it was just handing over the POSIX
-captured string vector to pcre_exec(), but (since release 2.00) PCRE has
-required a bigger vector, with some working space on the end. This means that
-the POSIX wrapper now has to get and free some memory, and copy the results.
-
-6. Added some simple autoconf support, placing the test data and the
-documentation in separate directories, re-organizing some of the
-information files, and making it build pcre-config (a GNU standard). Also added
-libtool support for building PCRE as a shared library, which is now the
-default.
-
-7. Got rid of the leading zero in the definition of PCRE_MINOR because 08 and
-09 are not valid octal constants. Single digits will be used for minor values
-less than 10.
-
-8. Defined REG_EXTENDED and REG_NOSUB as zero in the POSIX header, so that
-existing programs that set these in the POSIX interface can use PCRE without
-modification.
-
-9. Added a new function, pcre_fullinfo() with an extensible interface. It can
-return all that pcre_info() returns, plus additional data. The pcre_info()
-function is retained for compatibility, but is considered to be obsolete.
-
-10. Added experimental recursion feature (?R) to handle one common case that
-Perl 5.6 will be able to do with (?p{...}).
-
-11. Added support for POSIX character classes like [:alpha:], which Perl is
-adopting.
-
-
-Version 2.08 31-Aug-99
-----------------------
-
-1. When startoffset was not zero and the pattern began with ".*", PCRE was not
-trying to match at the startoffset position, but instead was moving forward to
-the next newline as if a previous match had failed.
-
-2. pcretest was not making use of PCRE_NOTEMPTY when repeating for /g and /G,
-and could get into a loop if a null string was matched other than at the start
-of the subject.
-
-3. Added definitions of PCRE_MAJOR and PCRE_MINOR to pcre.h so the version can
-be distinguished at compile time, and for completeness also added PCRE_DATE.
-
-5. Added Paul Sokolovsky's minor changes to make it easy to compile a Win32 DLL
-in GnuWin32 environments.
-
-
-Version 2.07 29-Jul-99
-----------------------
-
-1. The documentation is now supplied in plain text form and HTML as well as in
-the form of man page sources.
-
-2. C++ compilers don't like assigning (void *) values to other pointer types.
-In particular this affects malloc(). Although there is no problem in Standard
-C, I've put in casts to keep C++ compilers happy.
-
-3. Typo on pcretest.c; a cast of (unsigned char *) in the POSIX regexec() call
-should be (const char *).
-
-4. If NOPOSIX is defined, pcretest.c compiles without POSIX support. This may
-be useful for non-Unix systems who don't want to bother with the POSIX stuff.
-However, I haven't made this a standard facility. The documentation doesn't
-mention it, and the Makefile doesn't support it.
-
-5. The Makefile now contains an "install" target, with editable destinations at
-the top of the file. The pcretest program is not installed.
-
-6. pgrep -V now gives the PCRE version number and date.
-
-7. Fixed bug: a zero repetition after a literal string (e.g. /abcde{0}/) was
-causing the entire string to be ignored, instead of just the last character.
-
-8. If a pattern like /"([^\\"]+|\\.)*"/ is applied in the normal way to a
-non-matching string, it can take a very, very long time, even for strings of
-quite modest length, because of the nested recursion. PCRE now does better in
-some of these cases. It does this by remembering the last required literal
-character in the pattern, and pre-searching the subject to ensure it is present
-before running the real match. In other words, it applies a heuristic to detect
-some types of certain failure quickly, and in the above example, if presented
-with a string that has no trailing " it gives "no match" very quickly.
-
-9. A new runtime option PCRE_NOTEMPTY causes null string matches to be ignored;
-other alternatives are tried instead.
-
-
-Version 2.06 09-Jun-99
-----------------------
-
-1. Change pcretest's output for amount of store used to show just the code
-space, because the remainder (the data block) varies in size between 32-bit and
-64-bit systems.
-
-2. Added an extra argument to pcre_exec() to supply an offset in the subject to
-start matching at. This allows lookbehinds to work when searching for multiple
-occurrences in a string.
-
-3. Added additional options to pcretest for testing multiple occurrences:
-
- /+ outputs the rest of the string that follows a match
- /g loops for multiple occurrences, using the new startoffset argument
- /G loops for multiple occurrences by passing an incremented pointer
-
-4. PCRE wasn't doing the "first character" optimization for patterns starting
-with \b or \B, though it was doing it for other lookbehind assertions. That is,
-it wasn't noticing that a match for a pattern such as /\bxyz/ has to start with
-the letter 'x'. On long subject strings, this gives a significant speed-up.
-
-
-Version 2.05 21-Apr-99
-----------------------
-
-1. Changed the type of magic_number from int to long int so that it works
-properly on 16-bit systems.
-
-2. Fixed a bug which caused patterns starting with .* not to work correctly
-when the subject string contained newline characters. PCRE was assuming
-anchoring for such patterns in all cases, which is not correct because .* will
-not pass a newline unless PCRE_DOTALL is set. It now assumes anchoring only if
-DOTALL is set at top level; otherwise it knows that patterns starting with .*
-must be retried after every newline in the subject.
-
-
-Version 2.04 18-Feb-99
-----------------------
-
-1. For parenthesized subpatterns with repeats whose minimum was zero, the
-computation of the store needed to hold the pattern was incorrect (too large).
-If such patterns were nested a few deep, this could multiply and become a real
-problem.
-
-2. Added /M option to pcretest to show the memory requirement of a specific
-pattern. Made -m a synonym of -s (which does this globally) for compatibility.
-
-3. Subpatterns of the form (regex){n,m} (i.e. limited maximum) were being
-compiled in such a way that the backtracking after subsequent failure was
-pessimal. Something like (a){0,3} was compiled as (a)?(a)?(a)? instead of
-((a)((a)(a)?)?)? with disastrous performance if the maximum was of any size.
-
-
-Version 2.03 02-Feb-99
-----------------------
-
-1. Fixed typo and small mistake in man page.
-
-2. Added 4th condition (GPL supersedes if conflict) and created separate
-LICENCE file containing the conditions.
-
-3. Updated pcretest so that patterns such as /abc\/def/ work like they do in
-Perl, that is the internal \ allows the delimiter to be included in the
-pattern. Locked out the use of \ as a delimiter. If \ immediately follows
-the final delimiter, add \ to the end of the pattern (to test the error).
-
-4. Added the convenience functions for extracting substrings after a successful
-match. Updated pcretest to make it able to test these functions.
-
-
-Version 2.02 14-Jan-99
-----------------------
-
-1. Initialized the working variables associated with each extraction so that
-their saving and restoring doesn't refer to uninitialized store.
-
-2. Put dummy code into study.c in order to trick the optimizer of the IBM C
-compiler for OS/2 into generating correct code. Apparently IBM isn't going to
-fix the problem.
-
-3. Pcretest: the timing code wasn't using LOOPREPEAT for timing execution
-calls, and wasn't printing the correct value for compiling calls. Increased the
-default value of LOOPREPEAT, and the number of significant figures in the
-times.
-
-4. Changed "/bin/rm" in the Makefile to "-rm" so it works on Windows NT.
-
-5. Renamed "deftables" as "dftables" to get it down to 8 characters, to avoid
-a building problem on Windows NT with a FAT file system.
-
-
-Version 2.01 21-Oct-98
-----------------------
-
-1. Changed the API for pcre_compile() to allow for the provision of a pointer
-to character tables built by pcre_maketables() in the current locale. If NULL
-is passed, the default tables are used.
-
-
-Version 2.00 24-Sep-98
-----------------------
-
-1. Since the (>?) facility is in Perl 5.005, don't require PCRE_EXTRA to enable
-it any more.
-
-2. Allow quantification of (?>) groups, and make it work correctly.
-
-3. The first character computation wasn't working for (?>) groups.
-
-4. Correct the implementation of \Z (it is permitted to match on the \n at the
-end of the subject) and add 5.005's \z, which really does match only at the
-very end of the subject.
-
-5. Remove the \X "cut" facility; Perl doesn't have it, and (?> is neater.
-
-6. Remove the ability to specify CASELESS, MULTILINE, DOTALL, and
-DOLLAR_END_ONLY at runtime, to make it possible to implement the Perl 5.005
-localized options. All options to pcre_study() were also removed.
-
-7. Add other new features from 5.005:
-
- $(?<= positive lookbehind
- $(?a*))*/ (a PCRE_EXTRA facility).
-
-
-Version 1.00 18-Nov-97
-----------------------
-
-1. Added compile-time macros to support systems such as SunOS4 which don't have
-memmove() or strerror() but have other things that can be used instead.
-
-2. Arranged that "make clean" removes the executables.
-
-
-Version 0.99 27-Oct-97
-----------------------
-
-1. Fixed bug in code for optimizing classes with only one character. It was
-initializing a 32-byte map regardless, which could cause it to run off the end
-of the memory it had got.
-
-2. Added, conditional on PCRE_EXTRA, the proposed (?>REGEX) construction.
-
-
-Version 0.98 22-Oct-97
-----------------------
-
-1. Fixed bug in code for handling temporary memory usage when there are more
-back references than supplied space in the ovector. This could cause segfaults.
-
-
-Version 0.97 21-Oct-97
-----------------------
-
-1. Added the \X "cut" facility, conditional on PCRE_EXTRA.
-
-2. Optimized negated single characters not to use a bit map.
-
-3. Brought error texts together as macro definitions; clarified some of them;
-fixed one that was wrong - it said "range out of order" when it meant "invalid
-escape sequence".
-
-4. Changed some char * arguments to const char *.
-
-5. Added PCRE_NOTBOL and PCRE_NOTEOL (from POSIX).
-
-6. Added the POSIX-style API wrapper in pcreposix.a and testing facilities in
-pcretest.
-
-
-Version 0.96 16-Oct-97
-----------------------
-
-1. Added a simple "pgrep" utility to the distribution.
-
-2. Fixed an incompatibility with Perl: "{" is now treated as a normal character
-unless it appears in one of the precise forms "{ddd}", "{ddd,}", or "{ddd,ddd}"
-where "ddd" means "one or more decimal digits".
-
-3. Fixed serious bug. If a pattern had a back reference, but the call to
-pcre_exec() didn't supply a large enough ovector to record the related
-identifying subpattern, the match always failed. PCRE now remembers the number
-of the largest back reference, and gets some temporary memory in which to save
-the offsets during matching if necessary, in order to ensure that
-backreferences always work.
-
-4. Increased the compatibility with Perl in a number of ways:
-
- (a) . no longer matches \n by default; an option PCRE_DOTALL is provided
- to request this handling. The option can be set at compile or exec time.
-
- (b) $ matches before a terminating newline by default; an option
- PCRE_DOLLAR_ENDONLY is provided to override this (but not in multiline
- mode). The option can be set at compile or exec time.
-
- (c) The handling of \ followed by a digit other than 0 is now supposed to be
- the same as Perl's. If the decimal number it represents is less than 10
- or there aren't that many previous left capturing parentheses, an octal
- escape is read. Inside a character class, it's always an octal escape,
- even if it is a single digit.
-
- (d) An escaped but undefined alphabetic character is taken as a literal,
- unless PCRE_EXTRA is set. Currently this just reserves the remaining
- escapes.
-
- (e) {0} is now permitted. (The previous item is removed from the compiled
- pattern).
-
-5. Changed all the names of code files so that the basic parts are no longer
-than 10 characters, and abolished the teeny "globals.c" file.
-
-6. Changed the handling of character classes; they are now done with a 32-byte
-bit map always.
-
-7. Added the -d and /D options to pcretest to make it possible to look at the
-internals of compilation without having to recompile pcre.
-
-
-Version 0.95 23-Sep-97
-----------------------
-
-1. Fixed bug in pre-pass concerning escaped "normal" characters such as \x5c or
-\x20 at the start of a run of normal characters. These were being treated as
-real characters, instead of the source characters being re-checked.
-
-
-Version 0.94 18-Sep-97
-----------------------
-
-1. The functions are now thread-safe, with the caveat that the global variables
-containing pointers to malloc() and free() or alternative functions are the
-same for all threads.
-
-2. Get pcre_study() to generate a bitmap of initial characters for non-
-anchored patterns when this is possible, and use it if passed to pcre_exec().
-
-
-Version 0.93 15-Sep-97
-----------------------
-
-1. /(b)|(:+)/ was computing an incorrect first character.
-
-2. Add pcre_study() to the API and the passing of pcre_extra to pcre_exec(),
-but not actually doing anything yet.
-
-3. Treat "-" characters in classes that cannot be part of ranges as literals,
-as Perl does (e.g. [-az] or [az-]).
-
-4. Set the anchored flag if a branch starts with .* or .*? because that tests
-all possible positions.
-
-5. Split up into different modules to avoid including unneeded functions in a
-compiled binary. However, compile and exec are still in one module. The "study"
-function is split off.
-
-6. The character tables are now in a separate module whose source is generated
-by an auxiliary program - but can then be edited by hand if required. There are
-now no calls to isalnum(), isspace(), isdigit(), isxdigit(), tolower() or
-toupper() in the code.
-
-7. Turn the malloc/free funtions variables into pcre_malloc and pcre_free and
-make them global. Abolish the function for setting them, as the caller can now
-set them directly.
-
-
-Version 0.92 11-Sep-97
-----------------------
-
-1. A repeat with a fixed maximum and a minimum of 1 for an ordinary character
-(e.g. /a{1,3}/) was broken (I mis-optimized it).
-
-2. Caseless matching was not working in character classes if the characters in
-the pattern were in upper case.
-
-3. Make ranges like [W-c] work in the same way as Perl for caseless matching.
-
-4. Make PCRE_ANCHORED public and accept as a compile option.
-
-5. Add an options word to pcre_exec() and accept PCRE_ANCHORED and
-PCRE_CASELESS at run time. Add escapes \A and \I to pcretest to cause it to
-pass them.
-
-6. Give an error if bad option bits passed at compile or run time.
-
-7. Add PCRE_MULTILINE at compile and exec time, and (?m) as well. Add \M to
-pcretest to cause it to pass that flag.
-
-8. Add pcre_info(), to get the number of identifying subpatterns, the stored
-options, and the first character, if set.
-
-9. Recognize C+ or C{n,m} where n >= 1 as providing a fixed starting character.
-
-
-Version 0.91 10-Sep-97
-----------------------
-
-1. PCRE was failing to diagnose unlimited repeats of subpatterns that could
-match the empty string as in /(a*)*/. It was looping and ultimately crashing.
-
-2. PCRE was looping on encountering an indefinitely repeated back reference to
-a subpattern that had matched an empty string, e.g. /(a|)\1*/. It now does what
-Perl does - treats the match as successful.
-
-****
diff --git a/pcre/doc/NON-UNIX-USE b/pcre/doc/NON-UNIX-USE
deleted file mode 100644
index 09a74324..00000000
--- a/pcre/doc/NON-UNIX-USE
+++ /dev/null
@@ -1,50 +0,0 @@
-Compiling PCRE on non-Unix systems
-----------------------------------
-
-If you want to compile PCRE for a non-Unix system, note that it consists
-entirely of code written in Standard C, and so should compile successfully
-on any machine with a Standard C compiler and library, using normal compiling
-commands to do the following:
-
-(1) Copy or rename the file config.in as config.h, and change the macros that
-define HAVE_STRERROR and HAVE_MEMMOVE to define them as 1 rather than 0.
-Unfortunately, because of the way Unix autoconf works, the default setting has
-to be 0.
-
-(2) Copy or rename the file pcre.in as pcre.h, and change the macro definitions
-for PCRE_MAJOR, PCRE_MINOR, and PCRE_DATE near its start to the values set in
-configure.in.
-
-(3) Compile dftables.c as a stand-alone program, and then run it with
-the standard output sent to chartables.c. This generates a set of standard
-character tables.
-
-(4) Compile maketables.c, get.c, study.c and pcre.c and link them all
-together into an object library in whichever form your system keeps such
-libraries. This is the pcre library (chartables.c gets included by means of an
-#include directive).
-
-(5) Similarly, compile pcreposix.c and link it as the pcreposix library.
-
-(6) Compile the test program pcretest.c. This needs the functions in the
-pcre and pcreposix libraries when linking.
-
-(7) Run pcretest on the testinput files in the testdata directory, and check
-that the output matches the corresponding testoutput files. You must use the
--i option when checking testinput2.
-
-If you have a system without "configure" but where you can use a Makefile, edit
-Makefile.in to create Makefile, substituting suitable values for the variables
-at the head of the file.
-
-Some help in building a Win32 DLL of PCRE in GnuWin32 environments was
-contributed by Paul.Sokolovsky@technologist.com. These environments are
-Mingw32 (http://www.xraylith.wisc.edu/~khan/software/gnu-win32/) and
-CygWin (http://sourceware.cygnus.com/cygwin/). Paul comments:
-
- For CygWin, set CFLAGS=-mno-cygwin, and do 'make dll'. You'll get
- pcre.dll (containing pcreposix also), libpcre.dll.a, and dynamically
- linked pgrep and pcretest. If you have /bin/sh, run RunTest (three
- main test go ok, locale not supported).
-
-****
diff --git a/pcre/doc/Tech.Notes b/pcre/doc/Tech.Notes
deleted file mode 100644
index 7b96e5b6..00000000
--- a/pcre/doc/Tech.Notes
+++ /dev/null
@@ -1,243 +0,0 @@
-Technical Notes about PCRE
---------------------------
-
-Many years ago I implemented some regular expression functions to an algorithm
-suggested by Martin Richards. These were not Unix-like in form, and were quite
-restricted in what they could do by comparison with Perl. The interesting part
-about the algorithm was that the amount of space required to hold the compiled
-form of an expression was known in advance. The code to apply an expression did
-not operate by backtracking, as the Henry Spencer and Perl code does, but
-instead checked all possibilities simultaneously by keeping a list of current
-states and checking all of them as it advanced through the subject string. (In
-the terminology of Jeffrey Friedl's book, it was a "DFA algorithm".) When the
-pattern was all used up, all remaining states were possible matches, and the
-one matching the longest subset of the subject string was chosen. This did not
-necessarily maximize the individual wild portions of the pattern, as is
-expected in Unix and Perl-style regular expressions.
-
-By contrast, the code originally written by Henry Spencer and subsequently
-heavily modified for Perl actually compiles the expression twice: once in a
-dummy mode in order to find out how much store will be needed, and then for
-real. The execution function operates by backtracking and maximizing (or,
-optionally, minimizing in Perl) the amount of the subject that matches
-individual wild portions of the pattern. This is an "NFA algorithm" in Friedl's
-terminology.
-
-For the set of functions that forms PCRE (which are unrelated to those
-mentioned above), I tried at first to invent an algorithm that used an amount
-of store bounded by a multiple of the number of characters in the pattern, to
-save on compiling time. However, because of the greater complexity in Perl
-regular expressions, I couldn't do this. In any case, a first pass through the
-pattern is needed, in order to find internal flag settings like (?i) at top
-level. So PCRE works by running a very degenerate first pass to calculate a
-maximum store size, and then a second pass to do the real compile - which may
-use a bit less than the predicted amount of store. The idea is that this is
-going to turn out faster because the first pass is degenerate and the second
-pass can just store stuff straight into the vector. It does make the compiling
-functions bigger, of course, but they have got quite big anyway to handle all
-the Perl stuff.
-
-The compiled form of a pattern is a vector of bytes, containing items of
-variable length. The first byte in an item is an opcode, and the length of the
-item is either implicit in the opcode or contained in the data bytes which
-follow it. A list of all the opcodes follows:
-
-Opcodes with no following data
-------------------------------
-
-These items are all just one byte long
-
- OP_END end of pattern
- OP_ANY match any character
- OP_SOD match start of data: \A
- OP_CIRC ^ (start of data, or after \n in multiline)
- OP_NOT_WORD_BOUNDARY \W
- OP_WORD_BOUNDARY \w
- OP_NOT_DIGIT \D
- OP_DIGIT \d
- OP_NOT_WHITESPACE \S
- OP_WHITESPACE \s
- OP_NOT_WORDCHAR \W
- OP_WORDCHAR \w
- OP_EODN match end of data or \n at end: \Z
- OP_EOD match end of data: \z
- OP_DOLL $ (end of data, or before \n in multiline)
- OP_RECURSE match the pattern recursively
-
-
-Repeating single characters
----------------------------
-
-The common repeats (*, +, ?) when applied to a single character appear as
-two-byte items using the following opcodes:
-
- OP_STAR
- OP_MINSTAR
- OP_PLUS
- OP_MINPLUS
- OP_QUERY
- OP_MINQUERY
-
-Those with "MIN" in their name are the minimizing versions. Each is followed by
-the character that is to be repeated. Other repeats make use of
-
- OP_UPTO
- OP_MINUPTO
- OP_EXACT
-
-which are followed by a two-byte count (most significant first) and the
-repeated character. OP_UPTO matches from 0 to the given number. A repeat with a
-non-zero minimum and a fixed maximum is coded as an OP_EXACT followed by an
-OP_UPTO (or OP_MINUPTO).
-
-
-Repeating character types
--------------------------
-
-Repeats of things like \d are done exactly as for single characters, except
-that instead of a character, the opcode for the type is stored in the data
-byte. The opcodes are:
-
- OP_TYPESTAR
- OP_TYPEMINSTAR
- OP_TYPEPLUS
- OP_TYPEMINPLUS
- OP_TYPEQUERY
- OP_TYPEMINQUERY
- OP_TYPEUPTO
- OP_TYPEMINUPTO
- OP_TYPEEXACT
-
-
-Matching a character string
----------------------------
-
-The OP_CHARS opcode is followed by a one-byte count and then that number of
-characters. If there are more than 255 characters in sequence, successive
-instances of OP_CHARS are used.
-
-
-Character classes
------------------
-
-OP_CLASS is used for a character class, provided there are at least two
-characters in the class. If there is only one character, OP_CHARS is used for a
-positive class, and OP_NOT for a negative one (that is, for something like
-[^a]). Another set of repeating opcodes (OP_NOTSTAR etc.) are used for a
-repeated, negated, single-character class. The normal ones (OP_STAR etc.) are
-used for a repeated positive single-character class.
-
-OP_CLASS is followed by a 32-byte bit map containing a 1 bit for every
-character that is acceptable. The bits are counted from the least significant
-end of each byte.
-
-
-Back references
----------------
-
-OP_REF is followed by a single byte containing the reference number.
-
-
-Repeating character classes and back references
------------------------------------------------
-
-Single-character classes are handled specially (see above). This applies to
-OP_CLASS and OP_REF. In both cases, the repeat information follows the base
-item. The matching code looks at the following opcode to see if it is one of
-
- OP_CRSTAR
- OP_CRMINSTAR
- OP_CRPLUS
- OP_CRMINPLUS
- OP_CRQUERY
- OP_CRMINQUERY
- OP_CRRANGE
- OP_CRMINRANGE
-
-All but the last two are just single-byte items. The others are followed by
-four bytes of data, comprising the minimum and maximum repeat counts.
-
-
-Brackets and alternation
-------------------------
-
-A pair of non-capturing (round) brackets is wrapped round each expression at
-compile time, so alternation always happens in the context of brackets.
-Non-capturing brackets use the opcode OP_BRA, while capturing brackets use
-OP_BRA+1, OP_BRA+2, etc. [Note for North Americans: "bracket" to some English
-speakers, including myself, can be round, square, curly, or pointy. Hence this
-usage.]
-
-A bracket opcode is followed by two bytes which give the offset to the next
-alternative OP_ALT or, if there aren't any branches, to the matching KET
-opcode. Each OP_ALT is followed by two bytes giving the offset to the next one,
-or to the KET opcode.
-
-OP_KET is used for subpatterns that do not repeat indefinitely, while
-OP_KETRMIN and OP_KETRMAX are used for indefinite repetitions, minimally or
-maximally respectively. All three are followed by two bytes giving (as a
-positive number) the offset back to the matching BRA opcode.
-
-If a subpattern is quantified such that it is permitted to match zero times, it
-is preceded by one of OP_BRAZERO or OP_BRAMINZERO. These are single-byte
-opcodes which tell the matcher that skipping this subpattern entirely is a
-valid branch.
-
-A subpattern with an indefinite maximum repetition is replicated in the
-compiled data its minimum number of times (or once with a BRAZERO if the
-minimum is zero), with the final copy terminating with a KETRMIN or KETRMAX as
-appropriate.
-
-A subpattern with a bounded maximum repetition is replicated in a nested
-fashion up to the maximum number of times, with BRAZERO or BRAMINZERO before
-each replication after the minimum, so that, for example, (abc){2,5} is
-compiled as (abc)(abc)((abc)((abc)(abc)?)?)?. The 200-bracket limit does not
-apply to these internally generated brackets.
-
-
-Assertions
-----------
-
-Forward assertions are just like other subpatterns, but starting with one of
-the opcodes OP_ASSERT or OP_ASSERT_NOT. Backward assertions use the opcodes
-OP_ASSERTBACK and OP_ASSERTBACK_NOT, and the first opcode inside the assertion
-is OP_REVERSE, followed by a two byte count of the number of characters to move
-back the pointer in the subject string. When operating in UTF-8 mode, the count
-is a character count rather than a byte count. A separate count is present in
-each alternative of a lookbehind assertion, allowing them to have different
-fixed lengths.
-
-
-Once-only subpatterns
----------------------
-
-These are also just like other subpatterns, but they start with the opcode
-OP_ONCE.
-
-
-Conditional subpatterns
------------------------
-
-These are like other subpatterns, but they start with the opcode OP_COND. If
-the condition is a back reference, this is stored at the start of the
-subpattern using the opcode OP_CREF followed by one byte containing the
-reference number. Otherwise, a conditional subpattern will always start with
-one of the assertions.
-
-
-Changing options
-----------------
-
-If any of the /i, /m, or /s options are changed within a parenthesized group,
-an OP_OPT opcode is compiled, followed by one byte containing the new settings
-of these flags. If there are several alternatives in a group, there is an
-occurrence of OP_OPT at the start of all those following the first options
-change, to set appropriate options for the start of the alternative.
-Immediately after the end of the group there is another such item to reset the
-flags to their previous values. Other changes of flag within the pattern can be
-handled entirely at compile time, and so do not cause anything to be put into
-the compiled data.
-
-
-Philip Hazel
-August 2000
diff --git a/pcre/doc/authors b/pcre/doc/authors
deleted file mode 100644
index bfe1b5d8..00000000
--- a/pcre/doc/authors
+++ /dev/null
@@ -1,6 +0,0 @@
-Written by: Philip Hazel
-
-University of Cambridge Computing Service,
-Cambridge, England. Phone: +44 1223 334714.
-
-Copyright (c) 1997-2000 University of Cambridge
diff --git a/pcre/doc/copying b/pcre/doc/copying
deleted file mode 100644
index 34d20db9..00000000
--- a/pcre/doc/copying
+++ /dev/null
@@ -1,46 +0,0 @@
-PCRE LICENCE
-------------
-
-PCRE is a library of functions to support regular expressions whose syntax
-and semantics are as close as possible to those of the Perl 5 language.
-
-Written by: Philip Hazel
-
-University of Cambridge Computing Service,
-Cambridge, England. Phone: +44 1223 334714.
-
-Copyright (c) 1997-2000 University of Cambridge
-
-Permission is granted to anyone to use this software for any purpose on any
-computer system, and to redistribute it freely, subject to the following
-restrictions:
-
-1. This software is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-
-2. The origin of this software must not be misrepresented, either by
- explicit claim or by omission. In practice, this means that if you use
- PCRE in software which you distribute to others, commercially or
- otherwise, you must put a sentence like this
-
- Regular expression support is provided by the PCRE library package,
- which is open source software, written by Philip Hazel, and copyright
- by the University of Cambridge, England.
-
- somewhere reasonably visible in your documentation and in any relevant
- files or online help data or similar. A reference to the ftp site for
- the source, that is, to
-
- ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
-
- should also be given in the documentation.
-
-3. Altered versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
-
-4. If PCRE is embedded in any software that is released under the GNU
- General Purpose Licence (GPL), then the terms of that licence shall
- supersede any condition above with which it is incompatible.
-
-End
diff --git a/pcre/doc/news b/pcre/doc/news
deleted file mode 100644
index 56fccdfa..00000000
--- a/pcre/doc/news
+++ /dev/null
@@ -1,54 +0,0 @@
-News about PCRE releases
-------------------------
-
-Release 3.3 01-Aug-00
----------------------
-
-There is some support for UTF-8 character strings. This is incomplete and
-experimental. The documentation describes what is and what is not implemented.
-Otherwise, this is just a bug-fixing release.
-
-
-Release 3.0 01-Feb-00
----------------------
-
-1. A "configure" script is now used to configure PCRE for Unix systems. It
-builds a Makefile, a config.h file, and the pcre-config script.
-
-2. PCRE is built as a shared library by default.
-
-3. There is support for POSIX classes such as [:alpha:].
-
-5. There is an experimental recursion feature.
-
-----------------------------------------------------------------------------
- IMPORTANT FOR THOSE UPGRADING FROM VERSIONS BEFORE 2.00
-
-Please note that there has been a change in the API such that a larger
-ovector is required at matching time, to provide some additional workspace.
-The new man page has details. This change was necessary in order to support
-some of the new functionality in Perl 5.005.
-
- IMPORTANT FOR THOSE UPGRADING FROM VERSION 2.00
-
-Another (I hope this is the last!) change has been made to the API for the
-pcre_compile() function. An additional argument has been added to make it
-possible to pass over a pointer to character tables built in the current
-locale by pcre_maketables(). To use the default tables, this new arguement
-should be passed as NULL.
-
- IMPORTANT FOR THOSE UPGRADING FROM VERSION 2.05
-
-Yet another (and again I hope this really is the last) change has been made
-to the API for the pcre_exec() function. An additional argument has been
-added to make it possible to start the match other than at the start of the
-subject string. This is important if there are lookbehinds. The new man
-page has the details, but you just want to convert existing programs, all
-you need to do is to stick in a new fifth argument to pcre_exec(), with a
-value of zero. For example, change
-
- pcre_exec(pattern, extra, subject, length, options, ovec, ovecsize)
-to
- pcre_exec(pattern, extra, subject, length, 0, options, ovec, ovecsize)
-
-****
diff --git a/pcre/doc/pcre.3 b/pcre/doc/pcre.3
deleted file mode 100644
index bb812f47..00000000
--- a/pcre/doc/pcre.3
+++ /dev/null
@@ -1,1810 +0,0 @@
-.TH PCRE 3
-.SH NAME
-pcre - Perl-compatible regular expressions.
-.SH SYNOPSIS
-.B #include
-.PP
-.SM
-.br
-.B pcre *pcre_compile(const char *\fIpattern\fR, int \fIoptions\fR,
-.ti +5n
-.B const char **\fIerrptr\fR, int *\fIerroffset\fR,
-.ti +5n
-.B const unsigned char *\fItableptr\fR);
-.PP
-.br
-.B pcre_extra *pcre_study(const pcre *\fIcode\fR, int \fIoptions\fR,
-.ti +5n
-.B const char **\fIerrptr\fR);
-.PP
-.br
-.B int pcre_exec(const pcre *\fIcode\fR, "const pcre_extra *\fIextra\fR,"
-.ti +5n
-.B "const char *\fIsubject\fR," int \fIlength\fR, int \fIstartoffset\fR,
-.ti +5n
-.B int \fIoptions\fR, int *\fIovector\fR, int \fIovecsize\fR);
-.PP
-.br
-.B int pcre_copy_substring(const char *\fIsubject\fR, int *\fIovector\fR,
-.ti +5n
-.B int \fIstringcount\fR, int \fIstringnumber\fR, char *\fIbuffer\fR,
-.ti +5n
-.B int \fIbuffersize\fR);
-.PP
-.br
-.B int pcre_get_substring(const char *\fIsubject\fR, int *\fIovector\fR,
-.ti +5n
-.B int \fIstringcount\fR, int \fIstringnumber\fR,
-.ti +5n
-.B const char **\fIstringptr\fR);
-.PP
-.br
-.B int pcre_get_substring_list(const char *\fIsubject\fR,
-.ti +5n
-.B int *\fIovector\fR, int \fIstringcount\fR, "const char ***\fIlistptr\fR);"
-.PP
-.br
-.B void pcre_free_substring(const char *\fIstringptr\fR);
-.PP
-.br
-.B void pcre_free_substring_list(const char **\fIstringptr\fR);
-.PP
-.br
-.B const unsigned char *pcre_maketables(void);
-.PP
-.br
-.B int pcre_fullinfo(const pcre *\fIcode\fR, "const pcre_extra *\fIextra\fR,"
-.ti +5n
-.B int \fIwhat\fR, void *\fIwhere\fR);
-.PP
-.br
-.B int pcre_info(const pcre *\fIcode\fR, int *\fIoptptr\fR, int
-.B *\fIfirstcharptr\fR);
-.PP
-.br
-.B char *pcre_version(void);
-.PP
-.br
-.B void *(*pcre_malloc)(size_t);
-.PP
-.br
-.B void (*pcre_free)(void *);
-
-
-
-.SH DESCRIPTION
-The PCRE library is a set of functions that implement regular expression
-pattern matching using the same syntax and semantics as Perl 5, with just a few
-differences (see below). The current implementation corresponds to Perl 5.005,
-with some additional features from later versions. This includes some
-experimental, incomplete support for UTF-8 encoded strings. Details of exactly
-what is and what is not supported are given below.
-
-PCRE has its own native API, which is described in this document. There is also
-a set of wrapper functions that correspond to the POSIX regular expression API.
-These are described in the \fBpcreposix\fR documentation.
-
-The native API function prototypes are defined in the header file \fBpcre.h\fR,
-and on Unix systems the library itself is called \fBlibpcre.a\fR, so can be
-accessed by adding \fB-lpcre\fR to the command for linking an application which
-calls it. The header file defines the macros PCRE_MAJOR and PCRE_MINOR to
-contain the major and minor release numbers for the library. Applications can
-use these to include support for different releases.
-
-The functions \fBpcre_compile()\fR, \fBpcre_study()\fR, and \fBpcre_exec()\fR
-are used for compiling and matching regular expressions.
-
-The functions \fBpcre_copy_substring()\fR, \fBpcre_get_substring()\fR, and
-\fBpcre_get_substring_list()\fR are convenience functions for extracting
-captured substrings from a matched subject string; \fBpcre_free_substring()\fR
-and \fBpcre_free_substring_list()\fR are also provided, to free the memory used
-for extracted strings.
-
-The function \fBpcre_maketables()\fR is used (optionally) to build a set of
-character tables in the current locale for passing to \fBpcre_compile()\fR.
-
-The function \fBpcre_fullinfo()\fR is used to find out information about a
-compiled pattern; \fBpcre_info()\fR is an obsolete version which returns only
-some of the available information, but is retained for backwards compatibility.
-The function \fBpcre_version()\fR returns a pointer to a string containing the
-version of PCRE and its date of release.
-
-The global variables \fBpcre_malloc\fR and \fBpcre_free\fR initially contain
-the entry points of the standard \fBmalloc()\fR and \fBfree()\fR functions
-respectively. PCRE calls the memory management functions via these variables,
-so a calling program can replace them if it wishes to intercept the calls. This
-should be done before calling any PCRE functions.
-
-
-.SH MULTI-THREADING
-The PCRE functions can be used in multi-threading applications, with the
-proviso that the memory management functions pointed to by \fBpcre_malloc\fR
-and \fBpcre_free\fR are shared by all threads.
-
-The compiled form of a regular expression is not altered during matching, so
-the same compiled pattern can safely be used by several threads at once.
-
-
-.SH COMPILING A PATTERN
-The function \fBpcre_compile()\fR is called to compile a pattern into an
-internal form. The pattern is a C string terminated by a binary zero, and
-is passed in the argument \fIpattern\fR. A pointer to a single block of memory
-that is obtained via \fBpcre_malloc\fR is returned. This contains the
-compiled code and related data. The \fBpcre\fR type is defined for this for
-convenience, but in fact \fBpcre\fR is just a typedef for \fBvoid\fR, since the
-contents of the block are not externally defined. It is up to the caller to
-free the memory when it is no longer required.
-.PP
-The size of a compiled pattern is roughly proportional to the length of the
-pattern string, except that each character class (other than those containing
-just a single character, negated or not) requires 33 bytes, and repeat
-quantifiers with a minimum greater than one or a bounded maximum cause the
-relevant portions of the compiled pattern to be replicated.
-.PP
-The \fIoptions\fR argument contains independent bits that affect the
-compilation. It should be zero if no options are required. Some of the options,
-in particular, those that are compatible with Perl, can also be set and unset
-from within the pattern (see the detailed description of regular expressions
-below). For these options, the contents of the \fIoptions\fR argument specifies
-their initial settings at the start of compilation and execution. The
-PCRE_ANCHORED option can be set at the time of matching as well as at compile
-time.
-.PP
-If \fIerrptr\fR is NULL, \fBpcre_compile()\fR returns NULL immediately.
-Otherwise, if compilation of a pattern fails, \fBpcre_compile()\fR returns
-NULL, and sets the variable pointed to by \fIerrptr\fR to point to a textual
-error message. The offset from the start of the pattern to the character where
-the error was discovered is placed in the variable pointed to by
-\fIerroffset\fR, which must not be NULL. If it is, an immediate error is given.
-.PP
-If the final argument, \fItableptr\fR, is NULL, PCRE uses a default set of
-character tables which are built when it is compiled, using the default C
-locale. Otherwise, \fItableptr\fR must be the result of a call to
-\fBpcre_maketables()\fR. See the section on locale support below.
-.PP
-The following option bits are defined in the header file:
-
- PCRE_ANCHORED
-
-If this bit is set, the pattern is forced to be "anchored", that is, it is
-constrained to match only at the start of the string which is being searched
-(the "subject string"). This effect can also be achieved by appropriate
-constructs in the pattern itself, which is the only way to do it in Perl.
-
- PCRE_CASELESS
-
-If this bit is set, letters in the pattern match both upper and lower case
-letters. It is equivalent to Perl's /i option.
-
- PCRE_DOLLAR_ENDONLY
-
-If this bit is set, a dollar metacharacter in the pattern matches only at the
-end of the subject string. Without this option, a dollar also matches
-immediately before the final character if it is a newline (but not before any
-other newlines). The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is
-set. There is no equivalent to this option in Perl.
-
- PCRE_DOTALL
-
-If this bit is set, a dot metacharater in the pattern matches all characters,
-including newlines. Without it, newlines are excluded. This option is
-equivalent to Perl's /s option. A negative class such as [^a] always matches a
-newline character, independent of the setting of this option.
-
- PCRE_EXTENDED
-
-If this bit is set, whitespace data characters in the pattern are totally
-ignored except when escaped or inside a character class, and characters between
-an unescaped # outside a character class and the next newline character,
-inclusive, are also ignored. This is equivalent to Perl's /x option, and makes
-it possible to include comments inside complicated patterns. Note, however,
-that this applies only to data characters. Whitespace characters may never
-appear within special character sequences in a pattern, for example within the
-sequence (?( which introduces a conditional subpattern.
-
- PCRE_EXTRA
-
-This option was invented in order to turn on additional functionality of PCRE
-that is incompatible with Perl, but it is currently of very little use. When
-set, any backslash in a pattern that is followed by a letter that has no
-special meaning causes an error, thus reserving these combinations for future
-expansion. By default, as in Perl, a backslash followed by a letter with no
-special meaning is treated as a literal. There are at present no other features
-controlled by this option. It can also be set by a (?X) option setting within a
-pattern.
-
- PCRE_MULTILINE
-
-By default, PCRE treats the subject string as consisting of a single "line" of
-characters (even if it actually contains several newlines). The "start of line"
-metacharacter (^) matches only at the start of the string, while the "end of
-line" metacharacter ($) matches only at the end of the string, or before a
-terminating newline (unless PCRE_DOLLAR_ENDONLY is set). This is the same as
-Perl.
-
-When PCRE_MULTILINE it is set, the "start of line" and "end of line" constructs
-match immediately following or immediately before any newline in the subject
-string, respectively, as well as at the very start and end. This is equivalent
-to Perl's /m option. If there are no "\\n" characters in a subject string, or
-no occurrences of ^ or $ in a pattern, setting PCRE_MULTILINE has no
-effect.
-
- PCRE_UNGREEDY
-
-This option inverts the "greediness" of the quantifiers so that they are not
-greedy by default, but become greedy if followed by "?". It is not compatible
-with Perl. It can also be set by a (?U) option setting within the pattern.
-
- PCRE_UTF8
-
-This option causes PCRE to regard both the pattern and the subject as strings
-of UTF-8 characters instead of just byte strings. However, it is available only
-if PCRE has been built to include UTF-8 support. If not, the use of this option
-provokes an error. Support for UTF-8 is new, experimental, and incomplete.
-Details of exactly what it entails are given below.
-
-
-.SH STUDYING A PATTERN
-When a pattern is going to be used several times, it is worth spending more
-time analyzing it in order to speed up the time taken for matching. The
-function \fBpcre_study()\fR takes a pointer to a compiled pattern as its first
-argument, and returns a pointer to a \fBpcre_extra\fR block (another \fBvoid\fR
-typedef) containing additional information about the pattern; this can be
-passed to \fBpcre_exec()\fR. If no additional information is available, NULL
-is returned.
-
-The second argument contains option bits. At present, no options are defined
-for \fBpcre_study()\fR, and this argument should always be zero.
-
-The third argument for \fBpcre_study()\fR is a pointer to an error message. If
-studying succeeds (even if no data is returned), the variable it points to is
-set to NULL. Otherwise it points to a textual error message.
-
-At present, studying a pattern is useful only for non-anchored patterns that do
-not have a single fixed starting character. A bitmap of possible starting
-characters is created.
-
-
-.SH LOCALE SUPPORT
-PCRE handles caseless matching, and determines whether characters are letters,
-digits, or whatever, by reference to a set of tables. The library contains a
-default set of tables which is created in the default C locale when PCRE is
-compiled. This is used when the final argument of \fBpcre_compile()\fR is NULL,
-and is sufficient for many applications.
-
-An alternative set of tables can, however, be supplied. Such tables are built
-by calling the \fBpcre_maketables()\fR function, which has no arguments, in the
-relevant locale. The result can then be passed to \fBpcre_compile()\fR as often
-as necessary. For example, to build and use tables that are appropriate for the
-French locale (where accented characters with codes greater than 128 are
-treated as letters), the following code could be used:
-
- setlocale(LC_CTYPE, "fr");
- tables = pcre_maketables();
- re = pcre_compile(..., tables);
-
-The tables are built in memory that is obtained via \fBpcre_malloc\fR. The
-pointer that is passed to \fBpcre_compile\fR is saved with the compiled
-pattern, and the same tables are used via this pointer by \fBpcre_study()\fR
-and \fBpcre_exec()\fR. Thus for any single pattern, compilation, studying and
-matching all happen in the same locale, but different patterns can be compiled
-in different locales. It is the caller's responsibility to ensure that the
-memory containing the tables remains available for as long as it is needed.
-
-
-.SH INFORMATION ABOUT A PATTERN
-The \fBpcre_fullinfo()\fR function returns information about a compiled
-pattern. It replaces the obsolete \fBpcre_info()\fR function, which is
-nevertheless retained for backwards compability (and is documented below).
-
-The first argument for \fBpcre_fullinfo()\fR is a pointer to the compiled
-pattern. The second argument is the result of \fBpcre_study()\fR, or NULL if
-the pattern was not studied. The third argument specifies which piece of
-information is required, while the fourth argument is a pointer to a variable
-to receive the data. The yield of the function is zero for success, or one of
-the following negative numbers:
-
- PCRE_ERROR_NULL the argument \fIcode\fR was NULL
- the argument \fIwhere\fR was NULL
- PCRE_ERROR_BADMAGIC the "magic number" was not found
- PCRE_ERROR_BADOPTION the value of \fIwhat\fR was invalid
-
-The possible values for the third argument are defined in \fBpcre.h\fR, and are
-as follows:
-
- PCRE_INFO_OPTIONS
-
-Return a copy of the options with which the pattern was compiled. The fourth
-argument should point to au \fBunsigned long int\fR variable. These option bits
-are those specified in the call to \fBpcre_compile()\fR, modified by any
-top-level option settings within the pattern itself, and with the PCRE_ANCHORED
-bit forcibly set if the form of the pattern implies that it can match only at
-the start of a subject string.
-
- PCRE_INFO_SIZE
-
-Return the size of the compiled pattern, that is, the value that was passed as
-the argument to \fBpcre_malloc()\fR when PCRE was getting memory in which to
-place the compiled data. The fourth argument should point to a \fBsize_t\fR
-variable.
-
- PCRE_INFO_CAPTURECOUNT
-
-Return the number of capturing subpatterns in the pattern. The fourth argument
-should point to an \fbint\fR variable.
-
- PCRE_INFO_BACKREFMAX
-
-Return the number of the highest back reference in the pattern. The fourth
-argument should point to an \fBint\fR variable. Zero is returned if there are
-no back references.
-
- PCRE_INFO_FIRSTCHAR
-
-Return information about the first character of any matched string, for a
-non-anchored pattern. If there is a fixed first character, e.g. from a pattern
-such as (cat|cow|coyote), it is returned in the integer pointed to by
-\fIwhere\fR. Otherwise, if either
-
-(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch
-starts with "^", or
-
-(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set
-(if it were set, the pattern would be anchored),
-
--1 is returned, indicating that the pattern matches only at the start of a
-subject string or after any "\\n" within the string. Otherwise -2 is returned.
-For anchored patterns, -2 is returned.
-
- PCRE_INFO_FIRSTTABLE
-
-If the pattern was studied, and this resulted in the construction of a 256-bit
-table indicating a fixed set of characters for the first character in any
-matching string, a pointer to the table is returned. Otherwise NULL is
-returned. The fourth argument should point to an \fBunsigned char *\fR
-variable.
-
- PCRE_INFO_LASTLITERAL
-
-For a non-anchored pattern, return the value of the rightmost literal character
-which must exist in any matched string, other than at its start. The fourth
-argument should point to an \fBint\fR variable. If there is no such character,
-or if the pattern is anchored, -1 is returned. For example, for the pattern
-/a\\d+z\\d+/ the returned value is 'z'.
-
-The \fBpcre_info()\fR function is now obsolete because its interface is too
-restrictive to return all the available data about a compiled pattern. New
-programs should use \fBpcre_fullinfo()\fR instead. The yield of
-\fBpcre_info()\fR is the number of capturing subpatterns, or one of the
-following negative numbers:
-
- PCRE_ERROR_NULL the argument \fIcode\fR was NULL
- PCRE_ERROR_BADMAGIC the "magic number" was not found
-
-If the \fIoptptr\fR argument is not NULL, a copy of the options with which the
-pattern was compiled is placed in the integer it points to (see
-PCRE_INFO_OPTIONS above).
-
-If the pattern is not anchored and the \fIfirstcharptr\fR argument is not NULL,
-it is used to pass back information about the first character of any matched
-string (see PCRE_INFO_FIRSTCHAR above).
-
-
-.SH MATCHING A PATTERN
-The function \fBpcre_exec()\fR is called to match a subject string against a
-pre-compiled pattern, which is passed in the \fIcode\fR argument. If the
-pattern has been studied, the result of the study should be passed in the
-\fIextra\fR argument. Otherwise this must be NULL.
-
-The PCRE_ANCHORED option can be passed in the \fIoptions\fR argument, whose
-unused bits must be zero. However, if a pattern was compiled with
-PCRE_ANCHORED, or turned out to be anchored by virtue of its contents, it
-cannot be made unachored at matching time.
-
-There are also three further options that can be set only at matching time:
-
- PCRE_NOTBOL
-
-The first character of the string is not the beginning of a line, so the
-circumflex metacharacter should not match before it. Setting this without
-PCRE_MULTILINE (at compile time) causes circumflex never to match.
-
- PCRE_NOTEOL
-
-The end of the string is not the end of a line, so the dollar metacharacter
-should not match it nor (except in multiline mode) a newline immediately before
-it. Setting this without PCRE_MULTILINE (at compile time) causes dollar never
-to match.
-
- PCRE_NOTEMPTY
-
-An empty string is not considered to be a valid match if this option is set. If
-there are alternatives in the pattern, they are tried. If all the alternatives
-match the empty string, the entire match fails. For example, if the pattern
-
- a?b?
-
-is applied to a string not beginning with "a" or "b", it matches the empty
-string at the start of the subject. With PCRE_NOTEMPTY set, this match is not
-valid, so PCRE searches further into the string for occurrences of "a" or "b".
-
-Perl has no direct equivalent of PCRE_NOTEMPTY, but it does make a special case
-of a pattern match of the empty string within its \fBsplit()\fR function, and
-when using the /g modifier. It is possible to emulate Perl's behaviour after
-matching a null string by first trying the match again at the same offset with
-PCRE_NOTEMPTY set, and then if that fails by advancing the starting offset (see
-below) and trying an ordinary match again.
-
-The subject string is passed as a pointer in \fIsubject\fR, a length in
-\fIlength\fR, and a starting offset in \fIstartoffset\fR. Unlike the pattern
-string, it may contain binary zero characters. When the starting offset is
-zero, the search for a match starts at the beginning of the subject, and this
-is by far the most common case.
-
-A non-zero starting offset is useful when searching for another match in the
-same subject by calling \fBpcre_exec()\fR again after a previous success.
-Setting \fIstartoffset\fR differs from just passing over a shortened string and
-setting PCRE_NOTBOL in the case of a pattern that begins with any kind of
-lookbehind. For example, consider the pattern
-
- \\Biss\\B
-
-which finds occurrences of "iss" in the middle of words. (\\B matches only if
-the current position in the subject is not a word boundary.) When applied to
-the string "Mississipi" the first call to \fBpcre_exec()\fR finds the first
-occurrence. If \fBpcre_exec()\fR is called again with just the remainder of the
-subject, namely "issipi", it does not match, because \\B is always false at the
-start of the subject, which is deemed to be a word boundary. However, if
-\fBpcre_exec()\fR is passed the entire string again, but with \fIstartoffset\fR
-set to 4, it finds the second occurrence of "iss" because it is able to look
-behind the starting point to discover that it is preceded by a letter.
-
-If a non-zero starting offset is passed when the pattern is anchored, one
-attempt to match at the given offset is tried. This can only succeed if the
-pattern does not require the match to be at the start of the subject.
-
-In general, a pattern matches a certain portion of the subject, and in
-addition, further substrings from the subject may be picked out by parts of the
-pattern. Following the usage in Jeffrey Friedl's book, this is called
-"capturing" in what follows, and the phrase "capturing subpattern" is used for
-a fragment of a pattern that picks out a substring. PCRE supports several other
-kinds of parenthesized subpattern that do not cause substrings to be captured.
-
-Captured substrings are returned to the caller via a vector of integer offsets
-whose address is passed in \fIovector\fR. The number of elements in the vector
-is passed in \fIovecsize\fR. The first two-thirds of the vector is used to pass
-back captured substrings, each substring using a pair of integers. The
-remaining third of the vector is used as workspace by \fBpcre_exec()\fR while
-matching capturing subpatterns, and is not available for passing back
-information. The length passed in \fIovecsize\fR should always be a multiple of
-three. If it is not, it is rounded down.
-
-When a match has been successful, information about captured substrings is
-returned in pairs of integers, starting at the beginning of \fIovector\fR, and
-continuing up to two-thirds of its length at the most. The first element of a
-pair is set to the offset of the first character in a substring, and the second
-is set to the offset of the first character after the end of a substring. The
-first pair, \fIovector[0]\fR and \fIovector[1]\fR, identify the portion of the
-subject string matched by the entire pattern. The next pair is used for the
-first capturing subpattern, and so on. The value returned by \fBpcre_exec()\fR
-is the number of pairs that have been set. If there are no capturing
-subpatterns, the return value from a successful match is 1, indicating that
-just the first pair of offsets has been set.
-
-Some convenience functions are provided for extracting the captured substrings
-as separate strings. These are described in the following section.
-
-It is possible for an capturing subpattern number \fIn+1\fR to match some
-part of the subject when subpattern \fIn\fR has not been used at all. For
-example, if the string "abc" is matched against the pattern (a|(z))(bc)
-subpatterns 1 and 3 are matched, but 2 is not. When this happens, both offset
-values corresponding to the unused subpattern are set to -1.
-
-If a capturing subpattern is matched repeatedly, it is the last portion of the
-string that it matched that gets returned.
-
-If the vector is too small to hold all the captured substrings, it is used as
-far as possible (up to two-thirds of its length), and the function returns a
-value of zero. In particular, if the substring offsets are not of interest,
-\fBpcre_exec()\fR may be called with \fIovector\fR passed as NULL and
-\fIovecsize\fR as zero. However, if the pattern contains back references and
-the \fIovector\fR isn't big enough to remember the related substrings, PCRE has
-to get additional memory for use during matching. Thus it is usually advisable
-to supply an \fIovector\fR.
-
-Note that \fBpcre_info()\fR can be used to find out how many capturing
-subpatterns there are in a compiled pattern. The smallest size for
-\fIovector\fR that will allow for \fIn\fR captured substrings in addition to
-the offsets of the substring matched by the whole pattern is (\fIn\fR+1)*3.
-
-If \fBpcre_exec()\fR fails, it returns a negative number. The following are
-defined in the header file:
-
- PCRE_ERROR_NOMATCH (-1)
-
-The subject string did not match the pattern.
-
- PCRE_ERROR_NULL (-2)
-
-Either \fIcode\fR or \fIsubject\fR was passed as NULL, or \fIovector\fR was
-NULL and \fIovecsize\fR was not zero.
-
- PCRE_ERROR_BADOPTION (-3)
-
-An unrecognized bit was set in the \fIoptions\fR argument.
-
- PCRE_ERROR_BADMAGIC (-4)
-
-PCRE stores a 4-byte "magic number" at the start of the compiled code, to catch
-the case when it is passed a junk pointer. This is the error it gives when the
-magic number isn't present.
-
- PCRE_ERROR_UNKNOWN_NODE (-5)
-
-While running the pattern match, an unknown item was encountered in the
-compiled pattern. This error could be caused by a bug in PCRE or by overwriting
-of the compiled pattern.
-
- PCRE_ERROR_NOMEMORY (-6)
-
-If a pattern contains back references, but the \fIovector\fR that is passed to
-\fBpcre_exec()\fR is not big enough to remember the referenced substrings, PCRE
-gets a block of memory at the start of matching to use for this purpose. If the
-call via \fBpcre_malloc()\fR fails, this error is given. The memory is freed at
-the end of matching.
-
-
-.SH EXTRACTING CAPTURED SUBSTRINGS
-Captured substrings can be accessed directly by using the offsets returned by
-\fBpcre_exec()\fR in \fIovector\fR. For convenience, the functions
-\fBpcre_copy_substring()\fR, \fBpcre_get_substring()\fR, and
-\fBpcre_get_substring_list()\fR are provided for extracting captured substrings
-as new, separate, zero-terminated strings. A substring that contains a binary
-zero is correctly extracted and has a further zero added on the end, but the
-result does not, of course, function as a C string.
-
-The first three arguments are the same for all three functions: \fIsubject\fR
-is the subject string which has just been successfully matched, \fIovector\fR
-is a pointer to the vector of integer offsets that was passed to
-\fBpcre_exec()\fR, and \fIstringcount\fR is the number of substrings that
-were captured by the match, including the substring that matched the entire
-regular expression. This is the value returned by \fBpcre_exec\fR if it
-is greater than zero. If \fBpcre_exec()\fR returned zero, indicating that it
-ran out of space in \fIovector\fR, the value passed as \fIstringcount\fR should
-be the size of the vector divided by three.
-
-The functions \fBpcre_copy_substring()\fR and \fBpcre_get_substring()\fR
-extract a single substring, whose number is given as \fIstringnumber\fR. A
-value of zero extracts the substring that matched the entire pattern, while
-higher values extract the captured substrings. For \fBpcre_copy_substring()\fR,
-the string is placed in \fIbuffer\fR, whose length is given by
-\fIbuffersize\fR, while for \fBpcre_get_substring()\fR a new block of memory is
-obtained via \fBpcre_malloc\fR, and its address is returned via
-\fIstringptr\fR. The yield of the function is the length of the string, not
-including the terminating zero, or one of
-
- PCRE_ERROR_NOMEMORY (-6)
-
-The buffer was too small for \fBpcre_copy_substring()\fR, or the attempt to get
-memory failed for \fBpcre_get_substring()\fR.
-
- PCRE_ERROR_NOSUBSTRING (-7)
-
-There is no substring whose number is \fIstringnumber\fR.
-
-The \fBpcre_get_substring_list()\fR function extracts all available substrings
-and builds a list of pointers to them. All this is done in a single block of
-memory which is obtained via \fBpcre_malloc\fR. The address of the memory block
-is returned via \fIlistptr\fR, which is also the start of the list of string
-pointers. The end of the list is marked by a NULL pointer. The yield of the
-function is zero if all went well, or
-
- PCRE_ERROR_NOMEMORY (-6)
-
-if the attempt to get the memory block failed.
-
-When any of these functions encounter a substring that is unset, which can
-happen when capturing subpattern number \fIn+1\fR matches some part of the
-subject, but subpattern \fIn\fR has not been used at all, they return an empty
-string. This can be distinguished from a genuine zero-length substring by
-inspecting the appropriate offset in \fIovector\fR, which is negative for unset
-substrings.
-
-The two convenience functions \fBpcre_free_substring()\fR and
-\fBpcre_free_substring_list()\fR can be used to free the memory returned by
-a previous call of \fBpcre_get_substring()\fR or
-\fBpcre_get_substring_list()\fR, respectively. They do nothing more than call
-the function pointed to by \fBpcre_free\fR, which of course could be called
-directly from a C program. However, PCRE is used in some situations where it is
-linked via a special interface to another programming language which cannot use
-\fBpcre_free\fR directly; it is for these cases that the functions are
-provided.
-
-
-.SH LIMITATIONS
-There are some size limitations in PCRE but it is hoped that they will never in
-practice be relevant.
-The maximum length of a compiled pattern is 65539 (sic) bytes.
-All values in repeating quantifiers must be less than 65536.
-The maximum number of capturing subpatterns is 99.
-The maximum number of all parenthesized subpatterns, including capturing
-subpatterns, assertions, and other types of subpattern, is 200.
-
-The maximum length of a subject string is the largest positive number that an
-integer variable can hold. However, PCRE uses recursion to handle subpatterns
-and indefinite repetition. This means that the available stack space may limit
-the size of a subject string that can be processed by certain patterns.
-
-
-.SH DIFFERENCES FROM PERL
-The differences described here are with respect to Perl 5.005.
-
-1. By default, a whitespace character is any character that the C library
-function \fBisspace()\fR recognizes, though it is possible to compile PCRE with
-alternative character type tables. Normally \fBisspace()\fR matches space,
-formfeed, newline, carriage return, horizontal tab, and vertical tab. Perl 5
-no longer includes vertical tab in its set of whitespace characters. The \\v
-escape that was in the Perl documentation for a long time was never in fact
-recognized. However, the character itself was treated as whitespace at least
-up to 5.002. In 5.004 and 5.005 it does not match \\s.
-
-2. PCRE does not allow repeat quantifiers on lookahead assertions. Perl permits
-them, but they do not mean what you might think. For example, (?!a){3} does
-not assert that the next three characters are not "a". It just asserts that the
-next character is not "a" three times.
-
-3. Capturing subpatterns that occur inside negative lookahead assertions are
-counted, but their entries in the offsets vector are never set. Perl sets its
-numerical variables from any such patterns that are matched before the
-assertion fails to match something (thereby succeeding), but only if the
-negative lookahead assertion contains just one branch.
-
-4. Though binary zero characters are supported in the subject string, they are
-not allowed in a pattern string because it is passed as a normal C string,
-terminated by zero. The escape sequence "\\0" can be used in the pattern to
-represent a binary zero.
-
-5. The following Perl escape sequences are not supported: \\l, \\u, \\L, \\U,
-\\E, \\Q. In fact these are implemented by Perl's general string-handling and
-are not part of its pattern matching engine.
-
-6. The Perl \\G assertion is not supported as it is not relevant to single
-pattern matches.
-
-7. Fairly obviously, PCRE does not support the (?{code}) and (?p{code})
-constructions. However, there is some experimental support for recursive
-patterns using the non-Perl item (?R).
-
-8. There are at the time of writing some oddities in Perl 5.005_02 concerned
-with the settings of captured strings when part of a pattern is repeated. For
-example, matching "aba" against the pattern /^(a(b)?)+$/ sets $2 to the value
-"b", but matching "aabbaa" against /^(aa(bb)?)+$/ leaves $2 unset. However, if
-the pattern is changed to /^(aa(b(b))?)+$/ then $2 (and $3) are set.
-
-In Perl 5.004 $2 is set in both cases, and that is also true of PCRE. If in the
-future Perl changes to a consistent state that is different, PCRE may change to
-follow.
-
-9. Another as yet unresolved discrepancy is that in Perl 5.005_02 the pattern
-/^(a)?(?(1)a|b)+$/ matches the string "a", whereas in PCRE it does not.
-However, in both Perl and PCRE /^(a)?a/ matched against "a" leaves $1 unset.
-
-10. PCRE provides some extensions to the Perl regular expression facilities:
-
-(a) Although lookbehind assertions must match fixed length strings, each
-alternative branch of a lookbehind assertion can match a different length of
-string. Perl 5.005 requires them all to have the same length.
-
-(b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $ meta-
-character matches only at the very end of the string.
-
-(c) If PCRE_EXTRA is set, a backslash followed by a letter with no special
-meaning is faulted.
-
-(d) If PCRE_UNGREEDY is set, the greediness of the repetition quantifiers is
-inverted, that is, by default they are not greedy, but if followed by a
-question mark they are.
-
-(e) PCRE_ANCHORED can be used to force a pattern to be tried only at the start
-of the subject.
-
-(f) The PCRE_NOTBOL, PCRE_NOTEOL, and PCRE_NOTEMPTY options for
-\fBpcre_exec()\fR have no Perl equivalents.
-
-(g) The (?R) construct allows for recursive pattern matching (Perl 5.6 can do
-this using the (?p{code}) construct, which PCRE cannot of course support.)
-
-
-.SH REGULAR EXPRESSION DETAILS
-The syntax and semantics of the regular expressions supported by PCRE are
-described below. Regular expressions are also described in the Perl
-documentation and in a number of other books, some of which have copious
-examples. Jeffrey Friedl's "Mastering Regular Expressions", published by
-O'Reilly (ISBN 1-56592-257), covers them in great detail.
-
-The description here is intended as reference documentation. The basic
-operation of PCRE is on strings of bytes. However, there is the beginnings of
-some support for UTF-8 character strings. To use this support you must
-configure PCRE to include it, and then call \fBpcre_compile()\fR with the
-PCRE_UTF8 option. How this affects the pattern matching is described in the
-final section of this document.
-
-A regular expression is a pattern that is matched against a subject string from
-left to right. Most characters stand for themselves in a pattern, and match the
-corresponding characters in the subject. As a trivial example, the pattern
-
- The quick brown fox
-
-matches a portion of a subject string that is identical to itself. The power of
-regular expressions comes from the ability to include alternatives and
-repetitions in the pattern. These are encoded in the pattern by the use of
-\fImeta-characters\fR, which do not stand for themselves but instead are
-interpreted in some special way.
-
-There are two different sets of meta-characters: those that are recognized
-anywhere in the pattern except within square brackets, and those that are
-recognized in square brackets. Outside square brackets, the meta-characters are
-as follows:
-
- \\ general escape character with several uses
- ^ assert start of subject (or line, in multiline mode)
- $ assert end of subject (or line, in multiline mode)
- . match any character except newline (by default)
- [ start character class definition
- | start of alternative branch
- ( start subpattern
- ) end subpattern
- ? extends the meaning of (
- also 0 or 1 quantifier
- also quantifier minimizer
- * 0 or more quantifier
- + 1 or more quantifier
- { start min/max quantifier
-
-Part of a pattern that is in square brackets is called a "character class". In
-a character class the only meta-characters are:
-
- \\ general escape character
- ^ negate the class, but only if the first character
- - indicates character range
- ] terminates the character class
-
-The following sections describe the use of each of the meta-characters.
-
-
-.SH BACKSLASH
-The backslash character has several uses. Firstly, if it is followed by a
-non-alphameric character, it takes away any special meaning that character may
-have. This use of backslash as an escape character applies both inside and
-outside character classes.
-
-For example, if you want to match a "*" character, you write "\\*" in the
-pattern. This applies whether or not the following character would otherwise be
-interpreted as a meta-character, so it is always safe to precede a
-non-alphameric with "\\" to specify that it stands for itself. In particular,
-if you want to match a backslash, you write "\\\\".
-
-If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the
-pattern (other than in a character class) and characters between a "#" outside
-a character class and the next newline character are ignored. An escaping
-backslash can be used to include a whitespace or "#" character as part of the
-pattern.
-
-A second use of backslash provides a way of encoding non-printing characters
-in patterns in a visible manner. There is no restriction on the appearance of
-non-printing characters, apart from the binary zero that terminates a pattern,
-but when a pattern is being prepared by text editing, it is usually easier to
-use one of the following escape sequences than the binary character it
-represents:
-
- \\a alarm, that is, the BEL character (hex 07)
- \\cx "control-x", where x is any character
- \\e escape (hex 1B)
- \\f formfeed (hex 0C)
- \\n newline (hex 0A)
- \\r carriage return (hex 0D)
- \\t tab (hex 09)
- \\xhh character with hex code hh
- \\ddd character with octal code ddd, or backreference
-
-The precise effect of "\\cx" is as follows: if "x" is a lower case letter, it
-is converted to upper case. Then bit 6 of the character (hex 40) is inverted.
-Thus "\\cz" becomes hex 1A, but "\\c{" becomes hex 3B, while "\\c;" becomes hex
-7B.
-
-After "\\x", up to two hexadecimal digits are read (letters can be in upper or
-lower case).
-
-After "\\0" up to two further octal digits are read. In both cases, if there
-are fewer than two digits, just those that are present are used. Thus the
-sequence "\\0\\x\\07" specifies two binary zeros followed by a BEL character.
-Make sure you supply two digits after the initial zero if the character that
-follows is itself an octal digit.
-
-The handling of a backslash followed by a digit other than 0 is complicated.
-Outside a character class, PCRE reads it and any following digits as a decimal
-number. If the number is less than 10, or if there have been at least that many
-previous capturing left parentheses in the expression, the entire sequence is
-taken as a \fIback reference\fR. A description of how this works is given
-later, following the discussion of parenthesized subpatterns.
-
-Inside a character class, or if the decimal number is greater than 9 and there
-have not been that many capturing subpatterns, PCRE re-reads up to three octal
-digits following the backslash, and generates a single byte from the least
-significant 8 bits of the value. Any subsequent digits stand for themselves.
-For example:
-
- \\040 is another way of writing a space
- \\40 is the same, provided there are fewer than 40
- previous capturing subpatterns
- \\7 is always a back reference
- \\11 might be a back reference, or another way of
- writing a tab
- \\011 is always a tab
- \\0113 is a tab followed by the character "3"
- \\113 is the character with octal code 113 (since there
- can be no more than 99 back references)
- \\377 is a byte consisting entirely of 1 bits
- \\81 is either a back reference, or a binary zero
- followed by the two characters "8" and "1"
-
-Note that octal values of 100 or greater must not be introduced by a leading
-zero, because no more than three octal digits are ever read.
-
-All the sequences that define a single byte value can be used both inside and
-outside character classes. In addition, inside a character class, the sequence
-"\\b" is interpreted as the backspace character (hex 08). Outside a character
-class it has a different meaning (see below).
-
-The third use of backslash is for specifying generic character types:
-
- \\d any decimal digit
- \\D any character that is not a decimal digit
- \\s any whitespace character
- \\S any character that is not a whitespace character
- \\w any "word" character
- \\W any "non-word" character
-
-Each pair of escape sequences partitions the complete set of characters into
-two disjoint sets. Any given character matches one, and only one, of each pair.
-
-A "word" character is any letter or digit or the underscore character, that is,
-any character which can be part of a Perl "word". The definition of letters and
-digits is controlled by PCRE's character tables, and may vary if locale-
-specific matching is taking place (see "Locale support" above). For example, in
-the "fr" (French) locale, some character codes greater than 128 are used for
-accented letters, and these are matched by \\w.
-
-These character type sequences can appear both inside and outside character
-classes. They each match one character of the appropriate type. If the current
-matching point is at the end of the subject string, all of them fail, since
-there is no character to match.
-
-The fourth use of backslash is for certain simple assertions. An assertion
-specifies a condition that has to be met at a particular point in a match,
-without consuming any characters from the subject string. The use of
-subpatterns for more complicated assertions is described below. The backslashed
-assertions are
-
- \\b word boundary
- \\B not a word boundary
- \\A start of subject (independent of multiline mode)
- \\Z end of subject or newline at end (independent of multiline mode)
- \\z end of subject (independent of multiline mode)
-
-These assertions may not appear in character classes (but note that "\\b" has a
-different meaning, namely the backspace character, inside a character class).
-
-A word boundary is a position in the subject string where the current character
-and the previous character do not both match \\w or \\W (i.e. one matches
-\\w and the other matches \\W), or the start or end of the string if the
-first or last character matches \\w, respectively.
-
-The \\A, \\Z, and \\z assertions differ from the traditional circumflex and
-dollar (described below) in that they only ever match at the very start and end
-of the subject string, whatever options are set. They are not affected by the
-PCRE_NOTBOL or PCRE_NOTEOL options. If the \fIstartoffset\fR argument of
-\fBpcre_exec()\fR is non-zero, \\A can never match. The difference between \\Z
-and \\z is that \\Z matches before a newline that is the last character of the
-string as well as at the end of the string, whereas \\z matches only at the
-end.
-
-
-.SH CIRCUMFLEX AND DOLLAR
-Outside a character class, in the default matching mode, the circumflex
-character is an assertion which is true only if the current matching point is
-at the start of the subject string. If the \fIstartoffset\fR argument of
-\fBpcre_exec()\fR is non-zero, circumflex can never match. Inside a character
-class, circumflex has an entirely different meaning (see below).
-
-Circumflex need not be the first character of the pattern if a number of
-alternatives are involved, but it should be the first thing in each alternative
-in which it appears if the pattern is ever to match that branch. If all
-possible alternatives start with a circumflex, that is, if the pattern is
-constrained to match only at the start of the subject, it is said to be an
-"anchored" pattern. (There are also other constructs that can cause a pattern
-to be anchored.)
-
-A dollar character is an assertion which is true only if the current matching
-point is at the end of the subject string, or immediately before a newline
-character that is the last character in the string (by default). Dollar need
-not be the last character of the pattern if a number of alternatives are
-involved, but it should be the last item in any branch in which it appears.
-Dollar has no special meaning in a character class.
-
-The meaning of dollar can be changed so that it matches only at the very end of
-the string, by setting the PCRE_DOLLAR_ENDONLY option at compile or matching
-time. This does not affect the \\Z assertion.
-
-The meanings of the circumflex and dollar characters are changed if the
-PCRE_MULTILINE option is set. When this is the case, they match immediately
-after and immediately before an internal "\\n" character, respectively, in
-addition to matching at the start and end of the subject string. For example,
-the pattern /^abc$/ matches the subject string "def\\nabc" in multiline mode,
-but not otherwise. Consequently, patterns that are anchored in single line mode
-because all branches start with "^" are not anchored in multiline mode, and a
-match for circumflex is possible when the \fIstartoffset\fR argument of
-\fBpcre_exec()\fR is non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
-PCRE_MULTILINE is set.
-
-Note that the sequences \\A, \\Z, and \\z can be used to match the start and
-end of the subject in both modes, and if all branches of a pattern start with
-\\A is it always anchored, whether PCRE_MULTILINE is set or not.
-
-
-.SH FULL STOP (PERIOD, DOT)
-Outside a character class, a dot in the pattern matches any one character in
-the subject, including a non-printing character, but not (by default) newline.
-If the PCRE_DOTALL option is set, dots match newlines as well. The handling of
-dot is entirely independent of the handling of circumflex and dollar, the only
-relationship being that they both involve newline characters. Dot has no
-special meaning in a character class.
-
-
-.SH SQUARE BRACKETS
-An opening square bracket introduces a character class, terminated by a closing
-square bracket. A closing square bracket on its own is not special. If a
-closing square bracket is required as a member of the class, it should be the
-first data character in the class (after an initial circumflex, if present) or
-escaped with a backslash.
-
-A character class matches a single character in the subject; the character must
-be in the set of characters defined by the class, unless the first character in
-the class is a circumflex, in which case the subject character must not be in
-the set defined by the class. If a circumflex is actually required as a member
-of the class, ensure it is not the first character, or escape it with a
-backslash.
-
-For example, the character class [aeiou] matches any lower case vowel, while
-[^aeiou] matches any character that is not a lower case vowel. Note that a
-circumflex is just a convenient notation for specifying the characters which
-are in the class by enumerating those that are not. It is not an assertion: it
-still consumes a character from the subject string, and fails if the current
-pointer is at the end of the string.
-
-When caseless matching is set, any letters in a class represent both their
-upper case and lower case versions, so for example, a caseless [aeiou] matches
-"A" as well as "a", and a caseless [^aeiou] does not match "A", whereas a
-caseful version would.
-
-The newline character is never treated in any special way in character classes,
-whatever the setting of the PCRE_DOTALL or PCRE_MULTILINE options is. A class
-such as [^a] will always match a newline.
-
-The minus (hyphen) character can be used to specify a range of characters in a
-character class. For example, [d-m] matches any letter between d and m,
-inclusive. If a minus character is required in a class, it must be escaped with
-a backslash or appear in a position where it cannot be interpreted as
-indicating a range, typically as the first or last character in the class.
-
-It is not possible to have the literal character "]" as the end character of a
-range. A pattern such as [W-]46] is interpreted as a class of two characters
-("W" and "-") followed by a literal string "46]", so it would match "W46]" or
-"-46]". However, if the "]" is escaped with a backslash it is interpreted as
-the end of range, so [W-\\]46] is interpreted as a single class containing a
-range followed by two separate characters. The octal or hexadecimal
-representation of "]" can also be used to end a range.
-
-Ranges operate in ASCII collating sequence. They can also be used for
-characters specified numerically, for example [\\000-\\037]. If a range that
-includes letters is used when caseless matching is set, it matches the letters
-in either case. For example, [W-c] is equivalent to [][\\^_`wxyzabc], matched
-caselessly, and if character tables for the "fr" locale are in use,
-[\\xc8-\\xcb] matches accented E characters in both cases.
-
-The character types \\d, \\D, \\s, \\S, \\w, and \\W may also appear in a
-character class, and add the characters that they match to the class. For
-example, [\\dABCDEF] matches any hexadecimal digit. A circumflex can
-conveniently be used with the upper case character types to specify a more
-restricted set of characters than the matching lower case type. For example,
-the class [^\\W_] matches any letter or digit, but not underscore.
-
-All non-alphameric characters other than \\, -, ^ (at the start) and the
-terminating ] are non-special in character classes, but it does no harm if they
-are escaped.
-
-
-.SH POSIX CHARACTER CLASSES
-Perl 5.6 (not yet released at the time of writing) is going to support the
-POSIX notation for character classes, which uses names enclosed by [: and :]
-within the enclosing square brackets. PCRE supports this notation. For example,
-
- [01[:alpha:]%]
-
-matches "0", "1", any alphabetic character, or "%". The supported class names
-are
-
- alnum letters and digits
- alpha letters
- ascii character codes 0 - 127
- cntrl control characters
- digit decimal digits (same as \\d)
- graph printing characters, excluding space
- lower lower case letters
- print printing characters, including space
- punct printing characters, excluding letters and digits
- space white space (same as \\s)
- upper upper case letters
- word "word" characters (same as \\w)
- xdigit hexadecimal digits
-
-The names "ascii" and "word" are Perl extensions. Another Perl extension is
-negation, which is indicated by a ^ character after the colon. For example,
-
- [12[:^digit:]]
-
-matches "1", "2", or any non-digit. PCRE (and Perl) also recogize the POSIX
-syntax [.ch.] and [=ch=] where "ch" is a "collating element", but these are not
-supported, and an error is given if they are encountered.
-
-
-.SH VERTICAL BAR
-Vertical bar characters are used to separate alternative patterns. For example,
-the pattern
-
- gilbert|sullivan
-
-matches either "gilbert" or "sullivan". Any number of alternatives may appear,
-and an empty alternative is permitted (matching the empty string).
-The matching process tries each alternative in turn, from left to right,
-and the first one that succeeds is used. If the alternatives are within a
-subpattern (defined below), "succeeds" means matching the rest of the main
-pattern as well as the alternative in the subpattern.
-
-
-.SH INTERNAL OPTION SETTING
-The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and PCRE_EXTENDED
-can be changed from within the pattern by a sequence of Perl option letters
-enclosed between "(?" and ")". The option letters are
-
- i for PCRE_CASELESS
- m for PCRE_MULTILINE
- s for PCRE_DOTALL
- x for PCRE_EXTENDED
-
-For example, (?im) sets caseless, multiline matching. It is also possible to
-unset these options by preceding the letter with a hyphen, and a combined
-setting and unsetting such as (?im-sx), which sets PCRE_CASELESS and
-PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED, is also
-permitted. If a letter appears both before and after the hyphen, the option is
-unset.
-
-The scope of these option changes depends on where in the pattern the setting
-occurs. For settings that are outside any subpattern (defined below), the
-effect is the same as if the options were set or unset at the start of
-matching. The following patterns all behave in exactly the same way:
-
- (?i)abc
- a(?i)bc
- ab(?i)c
- abc(?i)
-
-which in turn is the same as compiling the pattern abc with PCRE_CASELESS set.
-In other words, such "top level" settings apply to the whole pattern (unless
-there are other changes inside subpatterns). If there is more than one setting
-of the same option at top level, the rightmost setting is used.
-
-If an option change occurs inside a subpattern, the effect is different. This
-is a change of behaviour in Perl 5.005. An option change inside a subpattern
-affects only that part of the subpattern that follows it, so
-
- (a(?i)b)c
-
-matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used).
-By this means, options can be made to have different settings in different
-parts of the pattern. Any changes made in one alternative do carry on
-into subsequent branches within the same subpattern. For example,
-
- (a(?i)b|c)
-
-matches "ab", "aB", "c", and "C", even though when matching "C" the first
-branch is abandoned before the option setting. This is because the effects of
-option settings happen at compile time. There would be some very weird
-behaviour otherwise.
-
-The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed in the
-same way as the Perl-compatible options by using the characters U and X
-respectively. The (?X) flag setting is special in that it must always occur
-earlier in the pattern than any of the additional features it turns on, even
-when it is at top level. It is best put at the start.
-
-
-.SH SUBPATTERNS
-Subpatterns are delimited by parentheses (round brackets), which can be nested.
-Marking part of a pattern as a subpattern does two things:
-
-1. It localizes a set of alternatives. For example, the pattern
-
- cat(aract|erpillar|)
-
-matches one of the words "cat", "cataract", or "caterpillar". Without the
-parentheses, it would match "cataract", "erpillar" or the empty string.
-
-2. It sets up the subpattern as a capturing subpattern (as defined above).
-When the whole pattern matches, that portion of the subject string that matched
-the subpattern is passed back to the caller via the \fIovector\fR argument of
-\fBpcre_exec()\fR. Opening parentheses are counted from left to right (starting
-from 1) to obtain the numbers of the capturing subpatterns.
-
-For example, if the string "the red king" is matched against the pattern
-
- the ((red|white) (king|queen))
-
-the captured substrings are "red king", "red", and "king", and are numbered 1,
-2, and 3.
-
-The fact that plain parentheses fulfil two functions is not always helpful.
-There are often times when a grouping subpattern is required without a
-capturing requirement. If an opening parenthesis is followed by "?:", the
-subpattern does not do any capturing, and is not counted when computing the
-number of any subsequent capturing subpatterns. For example, if the string "the
-white queen" is matched against the pattern
-
- the ((?:red|white) (king|queen))
-
-the captured substrings are "white queen" and "queen", and are numbered 1 and
-2. The maximum number of captured substrings is 99, and the maximum number of
-all subpatterns, both capturing and non-capturing, is 200.
-
-As a convenient shorthand, if any option settings are required at the start of
-a non-capturing subpattern, the option letters may appear between the "?" and
-the ":". Thus the two patterns
-
- (?i:saturday|sunday)
- (?:(?i)saturday|sunday)
-
-match exactly the same set of strings. Because alternative branches are tried
-from left to right, and options are not reset until the end of the subpattern
-is reached, an option setting in one branch does affect subsequent branches, so
-the above patterns match "SUNDAY" as well as "Saturday".
-
-
-.SH REPETITION
-Repetition is specified by quantifiers, which can follow any of the following
-items:
-
- a single character, possibly escaped
- the . metacharacter
- a character class
- a back reference (see next section)
- a parenthesized subpattern (unless it is an assertion - see below)
-
-The general repetition quantifier specifies a minimum and maximum number of
-permitted matches, by giving the two numbers in curly brackets (braces),
-separated by a comma. The numbers must be less than 65536, and the first must
-be less than or equal to the second. For example:
-
- z{2,4}
-
-matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special
-character. If the second number is omitted, but the comma is present, there is
-no upper limit; if the second number and the comma are both omitted, the
-quantifier specifies an exact number of required matches. Thus
-
- [aeiou]{3,}
-
-matches at least 3 successive vowels, but may match many more, while
-
- \\d{8}
-
-matches exactly 8 digits. An opening curly bracket that appears in a position
-where a quantifier is not allowed, or one that does not match the syntax of a
-quantifier, is taken as a literal character. For example, {,6} is not a
-quantifier, but a literal string of four characters.
-
-The quantifier {0} is permitted, causing the expression to behave as if the
-previous item and the quantifier were not present.
-
-For convenience (and historical compatibility) the three most common
-quantifiers have single-character abbreviations:
-
- * is equivalent to {0,}
- + is equivalent to {1,}
- ? is equivalent to {0,1}
-
-It is possible to construct infinite loops by following a subpattern that can
-match no characters with a quantifier that has no upper limit, for example:
-
- (a?)*
-
-Earlier versions of Perl and PCRE used to give an error at compile time for
-such patterns. However, because there are cases where this can be useful, such
-patterns are now accepted, but if any repetition of the subpattern does in fact
-match no characters, the loop is forcibly broken.
-
-By default, the quantifiers are "greedy", that is, they match as much as
-possible (up to the maximum number of permitted times), without causing the
-rest of the pattern to fail. The classic example of where this gives problems
-is in trying to match comments in C programs. These appear between the
-sequences /* and */ and within the sequence, individual * and / characters may
-appear. An attempt to match C comments by applying the pattern
-
- /\\*.*\\*/
-
-to the string
-
- /* first command */ not comment /* second comment */
-
-fails, because it matches the entire string owing to the greediness of the .*
-item.
-
-However, if a quantifier is followed by a question mark, it ceases to be
-greedy, and instead matches the minimum number of times possible, so the
-pattern
-
- /\\*.*?\\*/
-
-does the right thing with the C comments. The meaning of the various
-quantifiers is not otherwise changed, just the preferred number of matches.
-Do not confuse this use of question mark with its use as a quantifier in its
-own right. Because it has two uses, it can sometimes appear doubled, as in
-
- \\d??\\d
-
-which matches one digit by preference, but can match two if that is the only
-way the rest of the pattern matches.
-
-If the PCRE_UNGREEDY option is set (an option which is not available in Perl),
-the quantifiers are not greedy by default, but individual ones can be made
-greedy by following them with a question mark. In other words, it inverts the
-default behaviour.
-
-When a parenthesized subpattern is quantified with a minimum repeat count that
-is greater than 1 or with a limited maximum, more store is required for the
-compiled pattern, in proportion to the size of the minimum or maximum.
-
-If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent
-to Perl's /s) is set, thus allowing the . to match newlines, the pattern is
-implicitly anchored, because whatever follows will be tried against every
-character position in the subject string, so there is no point in retrying the
-overall match at any position after the first. PCRE treats such a pattern as
-though it were preceded by \\A. In cases where it is known that the subject
-string contains no newlines, it is worth setting PCRE_DOTALL when the pattern
-begins with .* in order to obtain this optimization, or alternatively using ^
-to indicate anchoring explicitly.
-
-When a capturing subpattern is repeated, the value captured is the substring
-that matched the final iteration. For example, after
-
- (tweedle[dume]{3}\\s*)+
-
-has matched "tweedledum tweedledee" the value of the captured substring is
-"tweedledee". However, if there are nested capturing subpatterns, the
-corresponding captured values may have been set in previous iterations. For
-example, after
-
- /(a|(b))+/
-
-matches "aba" the value of the second captured substring is "b".
-
-
-.SH BACK REFERENCES
-Outside a character class, a backslash followed by a digit greater than 0 (and
-possibly further digits) is a back reference to a capturing subpattern earlier
-(i.e. to its left) in the pattern, provided there have been that many previous
-capturing left parentheses.
-
-However, if the decimal number following the backslash is less than 10, it is
-always taken as a back reference, and causes an error only if there are not
-that many capturing left parentheses in the entire pattern. In other words, the
-parentheses that are referenced need not be to the left of the reference for
-numbers less than 10. See the section entitled "Backslash" above for further
-details of the handling of digits following a backslash.
-
-A back reference matches whatever actually matched the capturing subpattern in
-the current subject string, rather than anything matching the subpattern
-itself. So the pattern
-
- (sens|respons)e and \\1ibility
-
-matches "sense and sensibility" and "response and responsibility", but not
-"sense and responsibility". If caseful matching is in force at the time of the
-back reference, the case of letters is relevant. For example,
-
- ((?i)rah)\\s+\\1
-
-matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original
-capturing subpattern is matched caselessly.
-
-There may be more than one back reference to the same subpattern. If a
-subpattern has not actually been used in a particular match, any back
-references to it always fail. For example, the pattern
-
- (a|(bc))\\2
-
-always fails if it starts to match "a" rather than "bc". Because there may be
-up to 99 back references, all digits following the backslash are taken
-as part of a potential back reference number. If the pattern continues with a
-digit character, some delimiter must be used to terminate the back reference.
-If the PCRE_EXTENDED option is set, this can be whitespace. Otherwise an empty
-comment can be used.
-
-A back reference that occurs inside the parentheses to which it refers fails
-when the subpattern is first used, so, for example, (a\\1) never matches.
-However, such references can be useful inside repeated subpatterns. For
-example, the pattern
-
- (a|b\\1)+
-
-matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of
-the subpattern, the back reference matches the character string corresponding
-to the previous iteration. In order for this to work, the pattern must be such
-that the first iteration does not need to match the back reference. This can be
-done using alternation, as in the example above, or by a quantifier with a
-minimum of zero.
-
-
-.SH ASSERTIONS
-An assertion is a test on the characters following or preceding the current
-matching point that does not actually consume any characters. The simple
-assertions coded as \\b, \\B, \\A, \\Z, \\z, ^ and $ are described above. More
-complicated assertions are coded as subpatterns. There are two kinds: those
-that look ahead of the current position in the subject string, and those that
-look behind it.
-
-An assertion subpattern is matched in the normal way, except that it does not
-cause the current matching position to be changed. Lookahead assertions start
-with (?= for positive assertions and (?! for negative assertions. For example,
-
- \\w+(?=;)
-
-matches a word followed by a semicolon, but does not include the semicolon in
-the match, and
-
- foo(?!bar)
-
-matches any occurrence of "foo" that is not followed by "bar". Note that the
-apparently similar pattern
-
- (?!foo)bar
-
-does not find an occurrence of "bar" that is preceded by something other than
-"foo"; it finds any occurrence of "bar" whatsoever, because the assertion
-(?!foo) is always true when the next three characters are "bar". A
-lookbehind assertion is needed to achieve this effect.
-
-Lookbehind assertions start with (?<= for positive assertions and (? as in this example:
-
- (?>\\d+)bar
-
-This kind of parenthesis "locks up" the part of the pattern it contains once
-it has matched, and a failure further into the pattern is prevented from
-backtracking into it. Backtracking past it to previous items, however, works as
-normal.
-
-An alternative description is that a subpattern of this type matches the string
-of characters that an identical standalone pattern would match, if anchored at
-the current point in the subject string.
-
-Once-only subpatterns are not capturing subpatterns. Simple cases such as the
-above example can be thought of as a maximizing repeat that must swallow
-everything it can. So, while both \\d+ and \\d+? are prepared to adjust the
-number of digits they match in order to make the rest of the pattern match,
-(?>\\d+) can only match an entire sequence of digits.
-
-This construction can of course contain arbitrarily complicated subpatterns,
-and it can be nested.
-
-Once-only subpatterns can be used in conjunction with lookbehind assertions to
-specify efficient matching at the end of the subject string. Consider a simple
-pattern such as
-
- abcd$
-
-when applied to a long string which does not match. Because matching proceeds
-from left to right, PCRE will look for each "a" in the subject and then see if
-what follows matches the rest of the pattern. If the pattern is specified as
-
- ^.*abcd$
-
-the initial .* matches the entire string at first, but when this fails (because
-there is no following "a"), it backtracks to match all but the last character,
-then all but the last two characters, and so on. Once again the search for "a"
-covers the entire string, from right to left, so we are no better off. However,
-if the pattern is written as
-
- ^(?>.*)(?<=abcd)
-
-there can be no backtracking for the .* item; it can match only the entire
-string. The subsequent lookbehind assertion does a single test on the last four
-characters. If it fails, the match fails immediately. For long strings, this
-approach makes a significant difference to the processing time.
-
-When a pattern contains an unlimited repeat inside a subpattern that can itself
-be repeated an unlimited number of times, the use of a once-only subpattern is
-the only way to avoid some failing matches taking a very long time indeed.
-The pattern
-
- (\\D+|<\\d+>)*[!?]
-
-matches an unlimited number of substrings that either consist of non-digits, or
-digits enclosed in <>, followed by either ! or ?. When it matches, it runs
-quickly. However, if it is applied to
-
- aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
-
-it takes a long time before reporting failure. This is because the string can
-be divided between the two repeats in a large number of ways, and all have to
-be tried. (The example used [!?] rather than a single character at the end,
-because both PCRE and Perl have an optimization that allows for fast failure
-when a single character is used. They remember the last single character that
-is required for a match, and fail early if it is not present in the string.)
-If the pattern is changed to
-
- ((?>\\D+)|<\\d+>)*[!?]
-
-sequences of non-digits cannot be broken, and failure happens quickly.
-
-
-.SH CONDITIONAL SUBPATTERNS
-It is possible to cause the matching process to obey a subpattern
-conditionally or to choose between two alternative subpatterns, depending on
-the result of an assertion, or whether a previous capturing subpattern matched
-or not. The two possible forms of conditional subpattern are
-
- (?(condition)yes-pattern)
- (?(condition)yes-pattern|no-pattern)
-
-If the condition is satisfied, the yes-pattern is used; otherwise the
-no-pattern (if present) is used. If there are more than two alternatives in the
-subpattern, a compile-time error occurs.
-
-There are two kinds of condition. If the text between the parentheses consists
-of a sequence of digits, the condition is satisfied if the capturing subpattern
-of that number has previously matched. The number must be greater than zero.
-Consider the following pattern, which contains non-significant white space to
-make it more readable (assume the PCRE_EXTENDED option) and to divide it into
-three parts for ease of discussion:
-
- ( \\( )? [^()]+ (?(1) \\) )
-
-The first part matches an optional opening parenthesis, and if that
-character is present, sets it as the first captured substring. The second part
-matches one or more characters that are not parentheses. The third part is a
-conditional subpattern that tests whether the first set of parentheses matched
-or not. If they did, that is, if subject started with an opening parenthesis,
-the condition is true, and so the yes-pattern is executed and a closing
-parenthesis is required. Otherwise, since no-pattern is not present, the
-subpattern matches nothing. In other words, this pattern matches a sequence of
-non-parentheses, optionally enclosed in parentheses.
-
-If the condition is not a sequence of digits, it must be an assertion. This may
-be a positive or negative lookahead or lookbehind assertion. Consider this
-pattern, again containing non-significant white space, and with the two
-alternatives on the second line:
-
- (?(?=[^a-z]*[a-z])
- \\d{2}-[a-z]{3}-\\d{2} | \\d{2}-\\d{2}-\\d{2} )
-
-The condition is a positive lookahead assertion that matches an optional
-sequence of non-letters followed by a letter. In other words, it tests for the
-presence of at least one letter in the subject. If a letter is found, the
-subject is matched against the first alternative; otherwise it is matched
-against the second. This pattern matches strings in one of the two forms
-dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.
-
-
-.SH COMMENTS
-The sequence (?# marks the start of a comment which continues up to the next
-closing parenthesis. Nested parentheses are not permitted. The characters
-that make up a comment play no part in the pattern matching at all.
-
-If the PCRE_EXTENDED option is set, an unescaped # character outside a
-character class introduces a comment that continues up to the next newline
-character in the pattern.
-
-
-.SH RECURSIVE PATTERNS
-Consider the problem of matching a string in parentheses, allowing for
-unlimited nested parentheses. Without the use of recursion, the best that can
-be done is to use a pattern that matches up to some fixed depth of nesting. It
-is not possible to handle an arbitrary nesting depth. Perl 5.6 has provided an
-experimental facility that allows regular expressions to recurse (amongst other
-things). It does this by interpolating Perl code in the expression at run time,
-and the code can refer to the expression itself. A Perl pattern to solve the
-parentheses problem can be created like this:
-
- $re = qr{\\( (?: (?>[^()]+) | (?p{$re}) )* \\)}x;
-
-The (?p{...}) item interpolates Perl code at run time, and in this case refers
-recursively to the pattern in which it appears. Obviously, PCRE cannot support
-the interpolation of Perl code. Instead, the special item (?R) is provided for
-the specific case of recursion. This PCRE pattern solves the parentheses
-problem (assume the PCRE_EXTENDED option is set so that white space is
-ignored):
-
- \\( ( (?>[^()]+) | (?R) )* \\)
-
-First it matches an opening parenthesis. Then it matches any number of
-substrings which can either be a sequence of non-parentheses, or a recursive
-match of the pattern itself (i.e. a correctly parenthesized substring). Finally
-there is a closing parenthesis.
-
-This particular example pattern contains nested unlimited repeats, and so the
-use of a once-only subpattern for matching strings of non-parentheses is
-important when applying the pattern to strings that do not match. For example,
-when it is applied to
-
- (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
-
-it yields "no match" quickly. However, if a once-only subpattern is not used,
-the match runs for a very long time indeed because there are so many different
-ways the + and * repeats can carve up the subject, and all have to be tested
-before failure can be reported.
-
-The values set for any capturing subpatterns are those from the outermost level
-of the recursion at which the subpattern value is set. If the pattern above is
-matched against
-
- (ab(cd)ef)
-
-the value for the capturing parentheses is "ef", which is the last value taken
-on at the top level. If additional parentheses are added, giving
-
- \\( ( ( (?>[^()]+) | (?R) )* ) \\)
- ^ ^
- ^ ^
-the string they capture is "ab(cd)ef", the contents of the top level
-parentheses. If there are more than 15 capturing parentheses in a pattern, PCRE
-has to obtain extra memory to store data during a recursion, which it does by
-using \fBpcre_malloc\fR, freeing it via \fBpcre_free\fR afterwards. If no
-memory can be obtained, it saves data for the first 15 capturing parentheses
-only, as there is no way to give an out-of-memory error from within a
-recursion.
-
-
-.SH PERFORMANCE
-Certain items that may appear in patterns are more efficient than others. It is
-more efficient to use a character class like [aeiou] than a set of alternatives
-such as (a|e|i|o|u). In general, the simplest construction that provides the
-required behaviour is usually the most efficient. Jeffrey Friedl's book
-contains a lot of discussion about optimizing regular expressions for efficient
-performance.
-
-When a pattern begins with .* and the PCRE_DOTALL option is set, the pattern is
-implicitly anchored by PCRE, since it can match only at the start of a subject
-string. However, if PCRE_DOTALL is not set, PCRE cannot make this optimization,
-because the . metacharacter does not then match a newline, and if the subject
-string contains newlines, the pattern may match from the character immediately
-following one of them instead of from the very start. For example, the pattern
-
- (.*) second
-
-matches the subject "first\\nand second" (where \\n stands for a newline
-character) with the first captured substring being "and". In order to do this,
-PCRE has to retry the match starting after every newline in the subject.
-
-If you are using such a pattern with subject strings that do not contain
-newlines, the best performance is obtained by setting PCRE_DOTALL, or starting
-the pattern with ^.* to indicate explicit anchoring. That saves PCRE from
-having to scan along the subject looking for a newline to restart at.
-
-Beware of patterns that contain nested indefinite repeats. These can take a
-long time to run when applied to a string that does not match. Consider the
-pattern fragment
-
- (a+)*
-
-This can match "aaaa" in 33 different ways, and this number increases very
-rapidly as the string gets longer. (The * repeat can match 0, 1, 2, 3, or 4
-times, and for each of those cases other than 0, the + repeats can match
-different numbers of times.) When the remainder of the pattern is such that the
-entire match is going to fail, PCRE has in principle to try every possible
-variation, and this can take an extremely long time.
-
-An optimization catches some of the more simple cases such as
-
- (a+)*b
-
-where a literal character follows. Before embarking on the standard matching
-procedure, PCRE checks that there is a "b" later in the subject string, and if
-there is not, it fails the match immediately. However, when there is no
-following literal this optimization cannot be used. You can see the difference
-by comparing the behaviour of
-
- (a+)*\\d
-
-with the pattern above. The former gives a failure almost instantly when
-applied to a whole line of "a" characters, whereas the latter takes an
-appreciable time with strings longer than about 20 characters.
-
-
-.SH UTF-8 SUPPORT
-Starting at release 3.3, PCRE has some support for character strings encoded
-in the UTF-8 format. This is incomplete, and is regarded as experimental. In
-order to use it, you must configure PCRE to include UTF-8 support in the code,
-and, in addition, you must call \fBpcre_compile()\fR with the PCRE_UTF8 option
-flag. When you do this, both the pattern and any subject strings that are
-matched against it are treated as UTF-8 strings instead of just strings of
-bytes, but only in the cases that are mentioned below.
-
-If you compile PCRE with UTF-8 support, but do not use it at run time, the
-library will be a bit bigger, but the additional run time overhead is limited
-to testing the PCRE_UTF8 flag in several places, so should not be very large.
-
-PCRE assumes that the strings it is given contain valid UTF-8 codes. It does
-not diagnose invalid UTF-8 strings. If you pass invalid UTF-8 strings to PCRE,
-the results are undefined.
-
-Running with PCRE_UTF8 set causes these changes in the way PCRE works:
-
-1. In a pattern, the escape sequence \\x{...}, where the contents of the braces
-is a string of hexadecimal digits, is interpreted as a UTF-8 character whose
-code number is the given hexadecimal number, for example: \\x{1234}. This
-inserts from one to six literal bytes into the pattern, using the UTF-8
-encoding. If a non-hexadecimal digit appears between the braces, the item is
-not recognized.
-
-2. The original hexadecimal escape sequence, \\xhh, generates a two-byte UTF-8
-character if its value is greater than 127.
-
-3. Repeat quantifiers are NOT correctly handled if they follow a multibyte
-character. For example, \\x{100}* and \\xc3+ do not work. If you want to
-repeat such characters, you must enclose them in non-capturing parentheses,
-for example (?:\\x{100}), at present.
-
-4. The dot metacharacter matches one UTF-8 character instead of a single byte.
-
-5. Unlike literal UTF-8 characters, the dot metacharacter followed by a
-repeat quantifier does operate correctly on UTF-8 characters instead of
-single bytes.
-
-4. Although the \\x{...} escape is permitted in a character class, characters
-whose values are greater than 255 cannot be included in a class.
-
-5. A class is matched against a UTF-8 character instead of just a single byte,
-but it can match only characters whose values are less than 256. Characters
-with greater values always fail to match a class.
-
-6. Repeated classes work correctly on multiple characters.
-
-7. Classes containing just a single character whose value is greater than 127
-(but less than 256), for example, [\\x80] or [^\\x{93}], do not work because
-these are optimized into single byte matches. In the first case, of course,
-the class brackets are just redundant.
-
-8. Lookbehind assertions move backwards in the subject by a fixed number of
-characters instead of a fixed number of bytes. Simple cases have been tested
-to work correctly, but there may be hidden gotchas herein.
-
-9. The character types such as \\d and \\w do not work correctly with UTF-8
-characters. They continue to test a single byte.
-
-10. Anything not explicitly mentioned here continues to work in bytes rather
-than in characters.
-
-The following UTF-8 features of Perl 5.6 are not implemented:
-
-1. The escape sequence \\C to match a single byte.
-
-2. The use of Unicode tables and properties and escapes \\p, \\P, and \\X.
-
-.SH AUTHOR
-Philip Hazel
-.br
-University Computing Service,
-.br
-New Museums Site,
-.br
-Cambridge CB2 3QG, England.
-.br
-Phone: +44 1223 334714
-
-Last updated: 28 August 2000,
-.br
- the 250th anniversary of the death of J.S. Bach.
-.br
-Copyright (c) 1997-2000 University of Cambridge.
diff --git a/pcre/doc/pcre.html b/pcre/doc/pcre.html
deleted file mode 100644
index b12b2126..00000000
--- a/pcre/doc/pcre.html
+++ /dev/null
@@ -1,2397 +0,0 @@
-
-
-pcre specification
-
-
-
pcre specification
-This HTML document has been generated automatically from the original man page.
-If there is any nonsense in it, please consult the man page in case the
-conversion went wrong.
-
-The PCRE library is a set of functions that implement regular expression
-pattern matching using the same syntax and semantics as Perl 5, with just a few
-differences (see below). The current implementation corresponds to Perl 5.005,
-with some additional features from later versions. This includes some
-experimental, incomplete support for UTF-8 encoded strings. Details of exactly
-what is and what is not supported are given below.
-
-
-PCRE has its own native API, which is described in this document. There is also
-a set of wrapper functions that correspond to the POSIX regular expression API.
-These are described in the pcreposix documentation.
-
-
-The native API function prototypes are defined in the header file pcre.h,
-and on Unix systems the library itself is called libpcre.a, so can be
-accessed by adding -lpcre to the command for linking an application which
-calls it. The header file defines the macros PCRE_MAJOR and PCRE_MINOR to
-contain the major and minor release numbers for the library. Applications can
-use these to include support for different releases.
-
-
-The functions pcre_compile(), pcre_study(), and pcre_exec()
-are used for compiling and matching regular expressions.
-
-
-The functions pcre_copy_substring(), pcre_get_substring(), and
-pcre_get_substring_list() are convenience functions for extracting
-captured substrings from a matched subject string; pcre_free_substring()
-and pcre_free_substring_list() are also provided, to free the memory used
-for extracted strings.
-
-
-The function pcre_maketables() is used (optionally) to build a set of
-character tables in the current locale for passing to pcre_compile().
-
-
-The function pcre_fullinfo() is used to find out information about a
-compiled pattern; pcre_info() is an obsolete version which returns only
-some of the available information, but is retained for backwards compatibility.
-The function pcre_version() returns a pointer to a string containing the
-version of PCRE and its date of release.
-
-
-The global variables pcre_malloc and pcre_free initially contain
-the entry points of the standard malloc() and free() functions
-respectively. PCRE calls the memory management functions via these variables,
-so a calling program can replace them if it wishes to intercept the calls. This
-should be done before calling any PCRE functions.
-
-The PCRE functions can be used in multi-threading applications, with the
-proviso that the memory management functions pointed to by pcre_malloc
-and pcre_free are shared by all threads.
-
-
-The compiled form of a regular expression is not altered during matching, so
-the same compiled pattern can safely be used by several threads at once.
-
-The function pcre_compile() is called to compile a pattern into an
-internal form. The pattern is a C string terminated by a binary zero, and
-is passed in the argument pattern. A pointer to a single block of memory
-that is obtained via pcre_malloc is returned. This contains the
-compiled code and related data. The pcre type is defined for this for
-convenience, but in fact pcre is just a typedef for void, since the
-contents of the block are not externally defined. It is up to the caller to
-free the memory when it is no longer required.
-
-
-The size of a compiled pattern is roughly proportional to the length of the
-pattern string, except that each character class (other than those containing
-just a single character, negated or not) requires 33 bytes, and repeat
-quantifiers with a minimum greater than one or a bounded maximum cause the
-relevant portions of the compiled pattern to be replicated.
-
-
-The options argument contains independent bits that affect the
-compilation. It should be zero if no options are required. Some of the options,
-in particular, those that are compatible with Perl, can also be set and unset
-from within the pattern (see the detailed description of regular expressions
-below). For these options, the contents of the options argument specifies
-their initial settings at the start of compilation and execution. The
-PCRE_ANCHORED option can be set at the time of matching as well as at compile
-time.
-
-
-If errptr is NULL, pcre_compile() returns NULL immediately.
-Otherwise, if compilation of a pattern fails, pcre_compile() returns
-NULL, and sets the variable pointed to by errptr to point to a textual
-error message. The offset from the start of the pattern to the character where
-the error was discovered is placed in the variable pointed to by
-erroffset, which must not be NULL. If it is, an immediate error is given.
-
-
-If the final argument, tableptr, is NULL, PCRE uses a default set of
-character tables which are built when it is compiled, using the default C
-locale. Otherwise, tableptr must be the result of a call to
-pcre_maketables(). See the section on locale support below.
-
-
-The following option bits are defined in the header file:
-
-
-
- PCRE_ANCHORED
-
-
-
-If this bit is set, the pattern is forced to be "anchored", that is, it is
-constrained to match only at the start of the string which is being searched
-(the "subject string"). This effect can also be achieved by appropriate
-constructs in the pattern itself, which is the only way to do it in Perl.
-
-
-
- PCRE_CASELESS
-
-
-
-If this bit is set, letters in the pattern match both upper and lower case
-letters. It is equivalent to Perl's /i option.
-
-
-
- PCRE_DOLLAR_ENDONLY
-
-
-
-If this bit is set, a dollar metacharacter in the pattern matches only at the
-end of the subject string. Without this option, a dollar also matches
-immediately before the final character if it is a newline (but not before any
-other newlines). The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is
-set. There is no equivalent to this option in Perl.
-
-
-
- PCRE_DOTALL
-
-
-
-If this bit is set, a dot metacharater in the pattern matches all characters,
-including newlines. Without it, newlines are excluded. This option is
-equivalent to Perl's /s option. A negative class such as [^a] always matches a
-newline character, independent of the setting of this option.
-
-
-
- PCRE_EXTENDED
-
-
-
-If this bit is set, whitespace data characters in the pattern are totally
-ignored except when escaped or inside a character class, and characters between
-an unescaped # outside a character class and the next newline character,
-inclusive, are also ignored. This is equivalent to Perl's /x option, and makes
-it possible to include comments inside complicated patterns. Note, however,
-that this applies only to data characters. Whitespace characters may never
-appear within special character sequences in a pattern, for example within the
-sequence (?( which introduces a conditional subpattern.
-
-
-
- PCRE_EXTRA
-
-
-
-This option was invented in order to turn on additional functionality of PCRE
-that is incompatible with Perl, but it is currently of very little use. When
-set, any backslash in a pattern that is followed by a letter that has no
-special meaning causes an error, thus reserving these combinations for future
-expansion. By default, as in Perl, a backslash followed by a letter with no
-special meaning is treated as a literal. There are at present no other features
-controlled by this option. It can also be set by a (?X) option setting within a
-pattern.
-
-
-
- PCRE_MULTILINE
-
-
-
-By default, PCRE treats the subject string as consisting of a single "line" of
-characters (even if it actually contains several newlines). The "start of line"
-metacharacter (^) matches only at the start of the string, while the "end of
-line" metacharacter ($) matches only at the end of the string, or before a
-terminating newline (unless PCRE_DOLLAR_ENDONLY is set). This is the same as
-Perl.
-
-
-When PCRE_MULTILINE it is set, the "start of line" and "end of line" constructs
-match immediately following or immediately before any newline in the subject
-string, respectively, as well as at the very start and end. This is equivalent
-to Perl's /m option. If there are no "\n" characters in a subject string, or
-no occurrences of ^ or $ in a pattern, setting PCRE_MULTILINE has no
-effect.
-
-
-
- PCRE_UNGREEDY
-
-
-
-This option inverts the "greediness" of the quantifiers so that they are not
-greedy by default, but become greedy if followed by "?". It is not compatible
-with Perl. It can also be set by a (?U) option setting within the pattern.
-
-
-
- PCRE_UTF8
-
-
-
-This option causes PCRE to regard both the pattern and the subject as strings
-of UTF-8 characters instead of just byte strings. However, it is available only
-if PCRE has been built to include UTF-8 support. If not, the use of this option
-provokes an error. Support for UTF-8 is new, experimental, and incomplete.
-Details of exactly what it entails are given below.
-
-When a pattern is going to be used several times, it is worth spending more
-time analyzing it in order to speed up the time taken for matching. The
-function pcre_study() takes a pointer to a compiled pattern as its first
-argument, and returns a pointer to a pcre_extra block (another void
-typedef) containing additional information about the pattern; this can be
-passed to pcre_exec(). If no additional information is available, NULL
-is returned.
-
-
-The second argument contains option bits. At present, no options are defined
-for pcre_study(), and this argument should always be zero.
-
-
-The third argument for pcre_study() is a pointer to an error message. If
-studying succeeds (even if no data is returned), the variable it points to is
-set to NULL. Otherwise it points to a textual error message.
-
-
-At present, studying a pattern is useful only for non-anchored patterns that do
-not have a single fixed starting character. A bitmap of possible starting
-characters is created.
-
-PCRE handles caseless matching, and determines whether characters are letters,
-digits, or whatever, by reference to a set of tables. The library contains a
-default set of tables which is created in the default C locale when PCRE is
-compiled. This is used when the final argument of pcre_compile() is NULL,
-and is sufficient for many applications.
-
-
-An alternative set of tables can, however, be supplied. Such tables are built
-by calling the pcre_maketables() function, which has no arguments, in the
-relevant locale. The result can then be passed to pcre_compile() as often
-as necessary. For example, to build and use tables that are appropriate for the
-French locale (where accented characters with codes greater than 128 are
-treated as letters), the following code could be used:
-
-The tables are built in memory that is obtained via pcre_malloc. The
-pointer that is passed to pcre_compile is saved with the compiled
-pattern, and the same tables are used via this pointer by pcre_study()
-and pcre_exec(). Thus for any single pattern, compilation, studying and
-matching all happen in the same locale, but different patterns can be compiled
-in different locales. It is the caller's responsibility to ensure that the
-memory containing the tables remains available for as long as it is needed.
-
-The pcre_fullinfo() function returns information about a compiled
-pattern. It replaces the obsolete pcre_info() function, which is
-nevertheless retained for backwards compability (and is documented below).
-
-
-The first argument for pcre_fullinfo() is a pointer to the compiled
-pattern. The second argument is the result of pcre_study(), or NULL if
-the pattern was not studied. The third argument specifies which piece of
-information is required, while the fourth argument is a pointer to a variable
-to receive the data. The yield of the function is zero for success, or one of
-the following negative numbers:
-
-
-
- PCRE_ERROR_NULL the argument code was NULL
- the argument where was NULL
- PCRE_ERROR_BADMAGIC the "magic number" was not found
- PCRE_ERROR_BADOPTION the value of what was invalid
-
-
-
-The possible values for the third argument are defined in pcre.h, and are
-as follows:
-
-
-
- PCRE_INFO_OPTIONS
-
-
-
-Return a copy of the options with which the pattern was compiled. The fourth
-argument should point to au unsigned long int variable. These option bits
-are those specified in the call to pcre_compile(), modified by any
-top-level option settings within the pattern itself, and with the PCRE_ANCHORED
-bit forcibly set if the form of the pattern implies that it can match only at
-the start of a subject string.
-
-
-
- PCRE_INFO_SIZE
-
-
-
-Return the size of the compiled pattern, that is, the value that was passed as
-the argument to pcre_malloc() when PCRE was getting memory in which to
-place the compiled data. The fourth argument should point to a size_t
-variable.
-
-
-
- PCRE_INFO_CAPTURECOUNT
-
-
-
-Return the number of capturing subpatterns in the pattern. The fourth argument
-should point to an \fbint\fR variable.
-
-
-
- PCRE_INFO_BACKREFMAX
-
-
-
-Return the number of the highest back reference in the pattern. The fourth
-argument should point to an int variable. Zero is returned if there are
-no back references.
-
-
-
- PCRE_INFO_FIRSTCHAR
-
-
-
-Return information about the first character of any matched string, for a
-non-anchored pattern. If there is a fixed first character, e.g. from a pattern
-such as (cat|cow|coyote), it is returned in the integer pointed to by
-where. Otherwise, if either
-
-
-(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch
-starts with "^", or
-
-
-(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set
-(if it were set, the pattern would be anchored),
-
-
--1 is returned, indicating that the pattern matches only at the start of a
-subject string or after any "\n" within the string. Otherwise -2 is returned.
-For anchored patterns, -2 is returned.
-
-
-
- PCRE_INFO_FIRSTTABLE
-
-
-
-If the pattern was studied, and this resulted in the construction of a 256-bit
-table indicating a fixed set of characters for the first character in any
-matching string, a pointer to the table is returned. Otherwise NULL is
-returned. The fourth argument should point to an unsigned char *
-variable.
-
-
-
- PCRE_INFO_LASTLITERAL
-
-
-
-For a non-anchored pattern, return the value of the rightmost literal character
-which must exist in any matched string, other than at its start. The fourth
-argument should point to an int variable. If there is no such character,
-or if the pattern is anchored, -1 is returned. For example, for the pattern
-/a\d+z\d+/ the returned value is 'z'.
-
-
-The pcre_info() function is now obsolete because its interface is too
-restrictive to return all the available data about a compiled pattern. New
-programs should use pcre_fullinfo() instead. The yield of
-pcre_info() is the number of capturing subpatterns, or one of the
-following negative numbers:
-
-
-
- PCRE_ERROR_NULL the argument code was NULL
- PCRE_ERROR_BADMAGIC the "magic number" was not found
-
-
-
-If the optptr argument is not NULL, a copy of the options with which the
-pattern was compiled is placed in the integer it points to (see
-PCRE_INFO_OPTIONS above).
-
-
-If the pattern is not anchored and the firstcharptr argument is not NULL,
-it is used to pass back information about the first character of any matched
-string (see PCRE_INFO_FIRSTCHAR above).
-
-The function pcre_exec() is called to match a subject string against a
-pre-compiled pattern, which is passed in the code argument. If the
-pattern has been studied, the result of the study should be passed in the
-extra argument. Otherwise this must be NULL.
-
-
-The PCRE_ANCHORED option can be passed in the options argument, whose
-unused bits must be zero. However, if a pattern was compiled with
-PCRE_ANCHORED, or turned out to be anchored by virtue of its contents, it
-cannot be made unachored at matching time.
-
-
-There are also three further options that can be set only at matching time:
-
-
-
- PCRE_NOTBOL
-
-
-
-The first character of the string is not the beginning of a line, so the
-circumflex metacharacter should not match before it. Setting this without
-PCRE_MULTILINE (at compile time) causes circumflex never to match.
-
-
-
- PCRE_NOTEOL
-
-
-
-The end of the string is not the end of a line, so the dollar metacharacter
-should not match it nor (except in multiline mode) a newline immediately before
-it. Setting this without PCRE_MULTILINE (at compile time) causes dollar never
-to match.
-
-
-
- PCRE_NOTEMPTY
-
-
-
-An empty string is not considered to be a valid match if this option is set. If
-there are alternatives in the pattern, they are tried. If all the alternatives
-match the empty string, the entire match fails. For example, if the pattern
-
-
-
- a?b?
-
-
-
-is applied to a string not beginning with "a" or "b", it matches the empty
-string at the start of the subject. With PCRE_NOTEMPTY set, this match is not
-valid, so PCRE searches further into the string for occurrences of "a" or "b".
-
-
-Perl has no direct equivalent of PCRE_NOTEMPTY, but it does make a special case
-of a pattern match of the empty string within its split() function, and
-when using the /g modifier. It is possible to emulate Perl's behaviour after
-matching a null string by first trying the match again at the same offset with
-PCRE_NOTEMPTY set, and then if that fails by advancing the starting offset (see
-below) and trying an ordinary match again.
-
-
-The subject string is passed as a pointer in subject, a length in
-length, and a starting offset in startoffset. Unlike the pattern
-string, it may contain binary zero characters. When the starting offset is
-zero, the search for a match starts at the beginning of the subject, and this
-is by far the most common case.
-
-
-A non-zero starting offset is useful when searching for another match in the
-same subject by calling pcre_exec() again after a previous success.
-Setting startoffset differs from just passing over a shortened string and
-setting PCRE_NOTBOL in the case of a pattern that begins with any kind of
-lookbehind. For example, consider the pattern
-
-
-
- \Biss\B
-
-
-
-which finds occurrences of "iss" in the middle of words. (\B matches only if
-the current position in the subject is not a word boundary.) When applied to
-the string "Mississipi" the first call to pcre_exec() finds the first
-occurrence. If pcre_exec() is called again with just the remainder of the
-subject, namely "issipi", it does not match, because \B is always false at the
-start of the subject, which is deemed to be a word boundary. However, if
-pcre_exec() is passed the entire string again, but with startoffset
-set to 4, it finds the second occurrence of "iss" because it is able to look
-behind the starting point to discover that it is preceded by a letter.
-
-
-If a non-zero starting offset is passed when the pattern is anchored, one
-attempt to match at the given offset is tried. This can only succeed if the
-pattern does not require the match to be at the start of the subject.
-
-
-In general, a pattern matches a certain portion of the subject, and in
-addition, further substrings from the subject may be picked out by parts of the
-pattern. Following the usage in Jeffrey Friedl's book, this is called
-"capturing" in what follows, and the phrase "capturing subpattern" is used for
-a fragment of a pattern that picks out a substring. PCRE supports several other
-kinds of parenthesized subpattern that do not cause substrings to be captured.
-
-
-Captured substrings are returned to the caller via a vector of integer offsets
-whose address is passed in ovector. The number of elements in the vector
-is passed in ovecsize. The first two-thirds of the vector is used to pass
-back captured substrings, each substring using a pair of integers. The
-remaining third of the vector is used as workspace by pcre_exec() while
-matching capturing subpatterns, and is not available for passing back
-information. The length passed in ovecsize should always be a multiple of
-three. If it is not, it is rounded down.
-
-
-When a match has been successful, information about captured substrings is
-returned in pairs of integers, starting at the beginning of ovector, and
-continuing up to two-thirds of its length at the most. The first element of a
-pair is set to the offset of the first character in a substring, and the second
-is set to the offset of the first character after the end of a substring. The
-first pair, ovector[0] and ovector[1], identify the portion of the
-subject string matched by the entire pattern. The next pair is used for the
-first capturing subpattern, and so on. The value returned by pcre_exec()
-is the number of pairs that have been set. If there are no capturing
-subpatterns, the return value from a successful match is 1, indicating that
-just the first pair of offsets has been set.
-
-
-Some convenience functions are provided for extracting the captured substrings
-as separate strings. These are described in the following section.
-
-
-It is possible for an capturing subpattern number n+1 to match some
-part of the subject when subpattern n has not been used at all. For
-example, if the string "abc" is matched against the pattern (a|(z))(bc)
-subpatterns 1 and 3 are matched, but 2 is not. When this happens, both offset
-values corresponding to the unused subpattern are set to -1.
-
-
-If a capturing subpattern is matched repeatedly, it is the last portion of the
-string that it matched that gets returned.
-
-
-If the vector is too small to hold all the captured substrings, it is used as
-far as possible (up to two-thirds of its length), and the function returns a
-value of zero. In particular, if the substring offsets are not of interest,
-pcre_exec() may be called with ovector passed as NULL and
-ovecsize as zero. However, if the pattern contains back references and
-the ovector isn't big enough to remember the related substrings, PCRE has
-to get additional memory for use during matching. Thus it is usually advisable
-to supply an ovector.
-
-
-Note that pcre_info() can be used to find out how many capturing
-subpatterns there are in a compiled pattern. The smallest size for
-ovector that will allow for n captured substrings in addition to
-the offsets of the substring matched by the whole pattern is (n+1)*3.
-
-
-If pcre_exec() fails, it returns a negative number. The following are
-defined in the header file:
-
-
-
- PCRE_ERROR_NOMATCH (-1)
-
-
-
-The subject string did not match the pattern.
-
-
-
- PCRE_ERROR_NULL (-2)
-
-
-
-Either code or subject was passed as NULL, or ovector was
-NULL and ovecsize was not zero.
-
-
-
- PCRE_ERROR_BADOPTION (-3)
-
-
-
-An unrecognized bit was set in the options argument.
-
-
-
- PCRE_ERROR_BADMAGIC (-4)
-
-
-
-PCRE stores a 4-byte "magic number" at the start of the compiled code, to catch
-the case when it is passed a junk pointer. This is the error it gives when the
-magic number isn't present.
-
-
-
- PCRE_ERROR_UNKNOWN_NODE (-5)
-
-
-
-While running the pattern match, an unknown item was encountered in the
-compiled pattern. This error could be caused by a bug in PCRE or by overwriting
-of the compiled pattern.
-
-
-
- PCRE_ERROR_NOMEMORY (-6)
-
-
-
-If a pattern contains back references, but the ovector that is passed to
-pcre_exec() is not big enough to remember the referenced substrings, PCRE
-gets a block of memory at the start of matching to use for this purpose. If the
-call via pcre_malloc() fails, this error is given. The memory is freed at
-the end of matching.
-
-Captured substrings can be accessed directly by using the offsets returned by
-pcre_exec() in ovector. For convenience, the functions
-pcre_copy_substring(), pcre_get_substring(), and
-pcre_get_substring_list() are provided for extracting captured substrings
-as new, separate, zero-terminated strings. A substring that contains a binary
-zero is correctly extracted and has a further zero added on the end, but the
-result does not, of course, function as a C string.
-
-
-The first three arguments are the same for all three functions: subject
-is the subject string which has just been successfully matched, ovector
-is a pointer to the vector of integer offsets that was passed to
-pcre_exec(), and stringcount is the number of substrings that
-were captured by the match, including the substring that matched the entire
-regular expression. This is the value returned by pcre_exec if it
-is greater than zero. If pcre_exec() returned zero, indicating that it
-ran out of space in ovector, the value passed as stringcount should
-be the size of the vector divided by three.
-
-
-The functions pcre_copy_substring() and pcre_get_substring()
-extract a single substring, whose number is given as stringnumber. A
-value of zero extracts the substring that matched the entire pattern, while
-higher values extract the captured substrings. For pcre_copy_substring(),
-the string is placed in buffer, whose length is given by
-buffersize, while for pcre_get_substring() a new block of memory is
-obtained via pcre_malloc, and its address is returned via
-stringptr. The yield of the function is the length of the string, not
-including the terminating zero, or one of
-
-
-
- PCRE_ERROR_NOMEMORY (-6)
-
-
-
-The buffer was too small for pcre_copy_substring(), or the attempt to get
-memory failed for pcre_get_substring().
-
-
-
- PCRE_ERROR_NOSUBSTRING (-7)
-
-
-
-There is no substring whose number is stringnumber.
-
-
-The pcre_get_substring_list() function extracts all available substrings
-and builds a list of pointers to them. All this is done in a single block of
-memory which is obtained via pcre_malloc. The address of the memory block
-is returned via listptr, which is also the start of the list of string
-pointers. The end of the list is marked by a NULL pointer. The yield of the
-function is zero if all went well, or
-
-
-
- PCRE_ERROR_NOMEMORY (-6)
-
-
-
-if the attempt to get the memory block failed.
-
-
-When any of these functions encounter a substring that is unset, which can
-happen when capturing subpattern number n+1 matches some part of the
-subject, but subpattern n has not been used at all, they return an empty
-string. This can be distinguished from a genuine zero-length substring by
-inspecting the appropriate offset in ovector, which is negative for unset
-substrings.
-
-
-The two convenience functions pcre_free_substring() and
-pcre_free_substring_list() can be used to free the memory returned by
-a previous call of pcre_get_substring() or
-pcre_get_substring_list(), respectively. They do nothing more than call
-the function pointed to by pcre_free, which of course could be called
-directly from a C program. However, PCRE is used in some situations where it is
-linked via a special interface to another programming language which cannot use
-pcre_free directly; it is for these cases that the functions are
-provided.
-
-There are some size limitations in PCRE but it is hoped that they will never in
-practice be relevant.
-The maximum length of a compiled pattern is 65539 (sic) bytes.
-All values in repeating quantifiers must be less than 65536.
-The maximum number of capturing subpatterns is 99.
-The maximum number of all parenthesized subpatterns, including capturing
-subpatterns, assertions, and other types of subpattern, is 200.
-
-
-The maximum length of a subject string is the largest positive number that an
-integer variable can hold. However, PCRE uses recursion to handle subpatterns
-and indefinite repetition. This means that the available stack space may limit
-the size of a subject string that can be processed by certain patterns.
-
-The differences described here are with respect to Perl 5.005.
-
-
-1. By default, a whitespace character is any character that the C library
-function isspace() recognizes, though it is possible to compile PCRE with
-alternative character type tables. Normally isspace() matches space,
-formfeed, newline, carriage return, horizontal tab, and vertical tab. Perl 5
-no longer includes vertical tab in its set of whitespace characters. The \v
-escape that was in the Perl documentation for a long time was never in fact
-recognized. However, the character itself was treated as whitespace at least
-up to 5.002. In 5.004 and 5.005 it does not match \s.
-
-
-2. PCRE does not allow repeat quantifiers on lookahead assertions. Perl permits
-them, but they do not mean what you might think. For example, (?!a){3} does
-not assert that the next three characters are not "a". It just asserts that the
-next character is not "a" three times.
-
-
-3. Capturing subpatterns that occur inside negative lookahead assertions are
-counted, but their entries in the offsets vector are never set. Perl sets its
-numerical variables from any such patterns that are matched before the
-assertion fails to match something (thereby succeeding), but only if the
-negative lookahead assertion contains just one branch.
-
-
-4. Though binary zero characters are supported in the subject string, they are
-not allowed in a pattern string because it is passed as a normal C string,
-terminated by zero. The escape sequence "\0" can be used in the pattern to
-represent a binary zero.
-
-
-5. The following Perl escape sequences are not supported: \l, \u, \L, \U,
-\E, \Q. In fact these are implemented by Perl's general string-handling and
-are not part of its pattern matching engine.
-
-
-6. The Perl \G assertion is not supported as it is not relevant to single
-pattern matches.
-
-
-7. Fairly obviously, PCRE does not support the (?{code}) and (?p{code})
-constructions. However, there is some experimental support for recursive
-patterns using the non-Perl item (?R).
-
-
-8. There are at the time of writing some oddities in Perl 5.005_02 concerned
-with the settings of captured strings when part of a pattern is repeated. For
-example, matching "aba" against the pattern /^(a(b)?)+$/ sets $2 to the value
-"b", but matching "aabbaa" against /^(aa(bb)?)+$/ leaves $2 unset. However, if
-the pattern is changed to /^(aa(b(b))?)+$/ then $2 (and $3) are set.
-
-
-In Perl 5.004 $2 is set in both cases, and that is also true of PCRE. If in the
-future Perl changes to a consistent state that is different, PCRE may change to
-follow.
-
-
-9. Another as yet unresolved discrepancy is that in Perl 5.005_02 the pattern
-/^(a)?(?(1)a|b)+$/ matches the string "a", whereas in PCRE it does not.
-However, in both Perl and PCRE /^(a)?a/ matched against "a" leaves $1 unset.
-
-
-10. PCRE provides some extensions to the Perl regular expression facilities:
-
-
-(a) Although lookbehind assertions must match fixed length strings, each
-alternative branch of a lookbehind assertion can match a different length of
-string. Perl 5.005 requires them all to have the same length.
-
-
-(b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $ meta-
-character matches only at the very end of the string.
-
-
-(c) If PCRE_EXTRA is set, a backslash followed by a letter with no special
-meaning is faulted.
-
-
-(d) If PCRE_UNGREEDY is set, the greediness of the repetition quantifiers is
-inverted, that is, by default they are not greedy, but if followed by a
-question mark they are.
-
-
-(e) PCRE_ANCHORED can be used to force a pattern to be tried only at the start
-of the subject.
-
-
-(f) The PCRE_NOTBOL, PCRE_NOTEOL, and PCRE_NOTEMPTY options for
-pcre_exec() have no Perl equivalents.
-
-
-(g) The (?R) construct allows for recursive pattern matching (Perl 5.6 can do
-this using the (?p{code}) construct, which PCRE cannot of course support.)
-
-The syntax and semantics of the regular expressions supported by PCRE are
-described below. Regular expressions are also described in the Perl
-documentation and in a number of other books, some of which have copious
-examples. Jeffrey Friedl's "Mastering Regular Expressions", published by
-O'Reilly (ISBN 1-56592-257), covers them in great detail.
-
-
-The description here is intended as reference documentation. The basic
-operation of PCRE is on strings of bytes. However, there is the beginnings of
-some support for UTF-8 character strings. To use this support you must
-configure PCRE to include it, and then call pcre_compile() with the
-PCRE_UTF8 option. How this affects the pattern matching is described in the
-final section of this document.
-
-
-A regular expression is a pattern that is matched against a subject string from
-left to right. Most characters stand for themselves in a pattern, and match the
-corresponding characters in the subject. As a trivial example, the pattern
-
-
-
- The quick brown fox
-
-
-
-matches a portion of a subject string that is identical to itself. The power of
-regular expressions comes from the ability to include alternatives and
-repetitions in the pattern. These are encoded in the pattern by the use of
-meta-characters, which do not stand for themselves but instead are
-interpreted in some special way.
-
-
-There are two different sets of meta-characters: those that are recognized
-anywhere in the pattern except within square brackets, and those that are
-recognized in square brackets. Outside square brackets, the meta-characters are
-as follows:
-
-
-
- \ general escape character with several uses
- ^ assert start of subject (or line, in multiline mode)
- $ assert end of subject (or line, in multiline mode)
- . match any character except newline (by default)
- [ start character class definition
- | start of alternative branch
- ( start subpattern
- ) end subpattern
- ? extends the meaning of (
- also 0 or 1 quantifier
- also quantifier minimizer
- * 0 or more quantifier
- + 1 or more quantifier
- { start min/max quantifier
-
-
-
-Part of a pattern that is in square brackets is called a "character class". In
-a character class the only meta-characters are:
-
-
-
- \ general escape character
- ^ negate the class, but only if the first character
- - indicates character range
- ] terminates the character class
-
-
-
-The following sections describe the use of each of the meta-characters.
-
-The backslash character has several uses. Firstly, if it is followed by a
-non-alphameric character, it takes away any special meaning that character may
-have. This use of backslash as an escape character applies both inside and
-outside character classes.
-
-
-For example, if you want to match a "*" character, you write "\*" in the
-pattern. This applies whether or not the following character would otherwise be
-interpreted as a meta-character, so it is always safe to precede a
-non-alphameric with "\" to specify that it stands for itself. In particular,
-if you want to match a backslash, you write "\\".
-
-
-If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the
-pattern (other than in a character class) and characters between a "#" outside
-a character class and the next newline character are ignored. An escaping
-backslash can be used to include a whitespace or "#" character as part of the
-pattern.
-
-
-A second use of backslash provides a way of encoding non-printing characters
-in patterns in a visible manner. There is no restriction on the appearance of
-non-printing characters, apart from the binary zero that terminates a pattern,
-but when a pattern is being prepared by text editing, it is usually easier to
-use one of the following escape sequences than the binary character it
-represents:
-
-
-
- \a alarm, that is, the BEL character (hex 07)
- \cx "control-x", where x is any character
- \e escape (hex 1B)
- \f formfeed (hex 0C)
- \n newline (hex 0A)
- \r carriage return (hex 0D)
- \t tab (hex 09)
- \xhh character with hex code hh
- \ddd character with octal code ddd, or backreference
-
-
-
-The precise effect of "\cx" is as follows: if "x" is a lower case letter, it
-is converted to upper case. Then bit 6 of the character (hex 40) is inverted.
-Thus "\cz" becomes hex 1A, but "\c{" becomes hex 3B, while "\c;" becomes hex
-7B.
-
-
-After "\x", up to two hexadecimal digits are read (letters can be in upper or
-lower case).
-
-
-After "\0" up to two further octal digits are read. In both cases, if there
-are fewer than two digits, just those that are present are used. Thus the
-sequence "\0\x\07" specifies two binary zeros followed by a BEL character.
-Make sure you supply two digits after the initial zero if the character that
-follows is itself an octal digit.
-
-
-The handling of a backslash followed by a digit other than 0 is complicated.
-Outside a character class, PCRE reads it and any following digits as a decimal
-number. If the number is less than 10, or if there have been at least that many
-previous capturing left parentheses in the expression, the entire sequence is
-taken as a back reference. A description of how this works is given
-later, following the discussion of parenthesized subpatterns.
-
-
-Inside a character class, or if the decimal number is greater than 9 and there
-have not been that many capturing subpatterns, PCRE re-reads up to three octal
-digits following the backslash, and generates a single byte from the least
-significant 8 bits of the value. Any subsequent digits stand for themselves.
-For example:
-
-
-
- \040 is another way of writing a space
- \40 is the same, provided there are fewer than 40
- previous capturing subpatterns
- \7 is always a back reference
- \11 might be a back reference, or another way of
- writing a tab
- \011 is always a tab
- \0113 is a tab followed by the character "3"
- \113 is the character with octal code 113 (since there
- can be no more than 99 back references)
- \377 is a byte consisting entirely of 1 bits
- \81 is either a back reference, or a binary zero
- followed by the two characters "8" and "1"
-
-
-
-Note that octal values of 100 or greater must not be introduced by a leading
-zero, because no more than three octal digits are ever read.
-
-
-All the sequences that define a single byte value can be used both inside and
-outside character classes. In addition, inside a character class, the sequence
-"\b" is interpreted as the backspace character (hex 08). Outside a character
-class it has a different meaning (see below).
-
-
-The third use of backslash is for specifying generic character types:
-
-
-
- \d any decimal digit
- \D any character that is not a decimal digit
- \s any whitespace character
- \S any character that is not a whitespace character
- \w any "word" character
- \W any "non-word" character
-
-
-
-Each pair of escape sequences partitions the complete set of characters into
-two disjoint sets. Any given character matches one, and only one, of each pair.
-
-
-A "word" character is any letter or digit or the underscore character, that is,
-any character which can be part of a Perl "word". The definition of letters and
-digits is controlled by PCRE's character tables, and may vary if locale-
-specific matching is taking place (see "Locale support" above). For example, in
-the "fr" (French) locale, some character codes greater than 128 are used for
-accented letters, and these are matched by \w.
-
-
-These character type sequences can appear both inside and outside character
-classes. They each match one character of the appropriate type. If the current
-matching point is at the end of the subject string, all of them fail, since
-there is no character to match.
-
-
-The fourth use of backslash is for certain simple assertions. An assertion
-specifies a condition that has to be met at a particular point in a match,
-without consuming any characters from the subject string. The use of
-subpatterns for more complicated assertions is described below. The backslashed
-assertions are
-
-
-
- \b word boundary
- \B not a word boundary
- \A start of subject (independent of multiline mode)
- \Z end of subject or newline at end (independent of multiline mode)
- \z end of subject (independent of multiline mode)
-
-
-
-These assertions may not appear in character classes (but note that "\b" has a
-different meaning, namely the backspace character, inside a character class).
-
-
-A word boundary is a position in the subject string where the current character
-and the previous character do not both match \w or \W (i.e. one matches
-\w and the other matches \W), or the start or end of the string if the
-first or last character matches \w, respectively.
-
-
-The \A, \Z, and \z assertions differ from the traditional circumflex and
-dollar (described below) in that they only ever match at the very start and end
-of the subject string, whatever options are set. They are not affected by the
-PCRE_NOTBOL or PCRE_NOTEOL options. If the startoffset argument of
-pcre_exec() is non-zero, \A can never match. The difference between \Z
-and \z is that \Z matches before a newline that is the last character of the
-string as well as at the end of the string, whereas \z matches only at the
-end.
-
-Outside a character class, in the default matching mode, the circumflex
-character is an assertion which is true only if the current matching point is
-at the start of the subject string. If the startoffset argument of
-pcre_exec() is non-zero, circumflex can never match. Inside a character
-class, circumflex has an entirely different meaning (see below).
-
-
-Circumflex need not be the first character of the pattern if a number of
-alternatives are involved, but it should be the first thing in each alternative
-in which it appears if the pattern is ever to match that branch. If all
-possible alternatives start with a circumflex, that is, if the pattern is
-constrained to match only at the start of the subject, it is said to be an
-"anchored" pattern. (There are also other constructs that can cause a pattern
-to be anchored.)
-
-
-A dollar character is an assertion which is true only if the current matching
-point is at the end of the subject string, or immediately before a newline
-character that is the last character in the string (by default). Dollar need
-not be the last character of the pattern if a number of alternatives are
-involved, but it should be the last item in any branch in which it appears.
-Dollar has no special meaning in a character class.
-
-
-The meaning of dollar can be changed so that it matches only at the very end of
-the string, by setting the PCRE_DOLLAR_ENDONLY option at compile or matching
-time. This does not affect the \Z assertion.
-
-
-The meanings of the circumflex and dollar characters are changed if the
-PCRE_MULTILINE option is set. When this is the case, they match immediately
-after and immediately before an internal "\n" character, respectively, in
-addition to matching at the start and end of the subject string. For example,
-the pattern /^abc$/ matches the subject string "def\nabc" in multiline mode,
-but not otherwise. Consequently, patterns that are anchored in single line mode
-because all branches start with "^" are not anchored in multiline mode, and a
-match for circumflex is possible when the startoffset argument of
-pcre_exec() is non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
-PCRE_MULTILINE is set.
-
-
-Note that the sequences \A, \Z, and \z can be used to match the start and
-end of the subject in both modes, and if all branches of a pattern start with
-\A is it always anchored, whether PCRE_MULTILINE is set or not.
-
-Outside a character class, a dot in the pattern matches any one character in
-the subject, including a non-printing character, but not (by default) newline.
-If the PCRE_DOTALL option is set, dots match newlines as well. The handling of
-dot is entirely independent of the handling of circumflex and dollar, the only
-relationship being that they both involve newline characters. Dot has no
-special meaning in a character class.
-
-An opening square bracket introduces a character class, terminated by a closing
-square bracket. A closing square bracket on its own is not special. If a
-closing square bracket is required as a member of the class, it should be the
-first data character in the class (after an initial circumflex, if present) or
-escaped with a backslash.
-
-
-A character class matches a single character in the subject; the character must
-be in the set of characters defined by the class, unless the first character in
-the class is a circumflex, in which case the subject character must not be in
-the set defined by the class. If a circumflex is actually required as a member
-of the class, ensure it is not the first character, or escape it with a
-backslash.
-
-
-For example, the character class [aeiou] matches any lower case vowel, while
-[^aeiou] matches any character that is not a lower case vowel. Note that a
-circumflex is just a convenient notation for specifying the characters which
-are in the class by enumerating those that are not. It is not an assertion: it
-still consumes a character from the subject string, and fails if the current
-pointer is at the end of the string.
-
-
-When caseless matching is set, any letters in a class represent both their
-upper case and lower case versions, so for example, a caseless [aeiou] matches
-"A" as well as "a", and a caseless [^aeiou] does not match "A", whereas a
-caseful version would.
-
-
-The newline character is never treated in any special way in character classes,
-whatever the setting of the PCRE_DOTALL or PCRE_MULTILINE options is. A class
-such as [^a] will always match a newline.
-
-
-The minus (hyphen) character can be used to specify a range of characters in a
-character class. For example, [d-m] matches any letter between d and m,
-inclusive. If a minus character is required in a class, it must be escaped with
-a backslash or appear in a position where it cannot be interpreted as
-indicating a range, typically as the first or last character in the class.
-
-
-It is not possible to have the literal character "]" as the end character of a
-range. A pattern such as [W-]46] is interpreted as a class of two characters
-("W" and "-") followed by a literal string "46]", so it would match "W46]" or
-"-46]". However, if the "]" is escaped with a backslash it is interpreted as
-the end of range, so [W-\]46] is interpreted as a single class containing a
-range followed by two separate characters. The octal or hexadecimal
-representation of "]" can also be used to end a range.
-
-
-Ranges operate in ASCII collating sequence. They can also be used for
-characters specified numerically, for example [\000-\037]. If a range that
-includes letters is used when caseless matching is set, it matches the letters
-in either case. For example, [W-c] is equivalent to [][\^_`wxyzabc], matched
-caselessly, and if character tables for the "fr" locale are in use,
-[\xc8-\xcb] matches accented E characters in both cases.
-
-
-The character types \d, \D, \s, \S, \w, and \W may also appear in a
-character class, and add the characters that they match to the class. For
-example, [\dABCDEF] matches any hexadecimal digit. A circumflex can
-conveniently be used with the upper case character types to specify a more
-restricted set of characters than the matching lower case type. For example,
-the class [^\W_] matches any letter or digit, but not underscore.
-
-
-All non-alphameric characters other than \, -, ^ (at the start) and the
-terminating ] are non-special in character classes, but it does no harm if they
-are escaped.
-
-Perl 5.6 (not yet released at the time of writing) is going to support the
-POSIX notation for character classes, which uses names enclosed by [: and :]
-within the enclosing square brackets. PCRE supports this notation. For example,
-
-
-
- [01[:alpha:]%]
-
-
-
-matches "0", "1", any alphabetic character, or "%". The supported class names
-are
-
-
-
- alnum letters and digits
- alpha letters
- ascii character codes 0 - 127
- cntrl control characters
- digit decimal digits (same as \d)
- graph printing characters, excluding space
- lower lower case letters
- print printing characters, including space
- punct printing characters, excluding letters and digits
- space white space (same as \s)
- upper upper case letters
- word "word" characters (same as \w)
- xdigit hexadecimal digits
-
-
-
-The names "ascii" and "word" are Perl extensions. Another Perl extension is
-negation, which is indicated by a ^ character after the colon. For example,
-
-
-
- [12[:^digit:]]
-
-
-
-matches "1", "2", or any non-digit. PCRE (and Perl) also recogize the POSIX
-syntax [.ch.] and [=ch=] where "ch" is a "collating element", but these are not
-supported, and an error is given if they are encountered.
-
-Vertical bar characters are used to separate alternative patterns. For example,
-the pattern
-
-
-
- gilbert|sullivan
-
-
-
-matches either "gilbert" or "sullivan". Any number of alternatives may appear,
-and an empty alternative is permitted (matching the empty string).
-The matching process tries each alternative in turn, from left to right,
-and the first one that succeeds is used. If the alternatives are within a
-subpattern (defined below), "succeeds" means matching the rest of the main
-pattern as well as the alternative in the subpattern.
-
-The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and PCRE_EXTENDED
-can be changed from within the pattern by a sequence of Perl option letters
-enclosed between "(?" and ")". The option letters are
-
-
-
- i for PCRE_CASELESS
- m for PCRE_MULTILINE
- s for PCRE_DOTALL
- x for PCRE_EXTENDED
-
-
-
-For example, (?im) sets caseless, multiline matching. It is also possible to
-unset these options by preceding the letter with a hyphen, and a combined
-setting and unsetting such as (?im-sx), which sets PCRE_CASELESS and
-PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED, is also
-permitted. If a letter appears both before and after the hyphen, the option is
-unset.
-
-
-The scope of these option changes depends on where in the pattern the setting
-occurs. For settings that are outside any subpattern (defined below), the
-effect is the same as if the options were set or unset at the start of
-matching. The following patterns all behave in exactly the same way:
-
-
-
- (?i)abc
- a(?i)bc
- ab(?i)c
- abc(?i)
-
-
-
-which in turn is the same as compiling the pattern abc with PCRE_CASELESS set.
-In other words, such "top level" settings apply to the whole pattern (unless
-there are other changes inside subpatterns). If there is more than one setting
-of the same option at top level, the rightmost setting is used.
-
-
-If an option change occurs inside a subpattern, the effect is different. This
-is a change of behaviour in Perl 5.005. An option change inside a subpattern
-affects only that part of the subpattern that follows it, so
-
-
-
- (a(?i)b)c
-
-
-
-matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used).
-By this means, options can be made to have different settings in different
-parts of the pattern. Any changes made in one alternative do carry on
-into subsequent branches within the same subpattern. For example,
-
-
-
- (a(?i)b|c)
-
-
-
-matches "ab", "aB", "c", and "C", even though when matching "C" the first
-branch is abandoned before the option setting. This is because the effects of
-option settings happen at compile time. There would be some very weird
-behaviour otherwise.
-
-
-The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed in the
-same way as the Perl-compatible options by using the characters U and X
-respectively. The (?X) flag setting is special in that it must always occur
-earlier in the pattern than any of the additional features it turns on, even
-when it is at top level. It is best put at the start.
-
-Subpatterns are delimited by parentheses (round brackets), which can be nested.
-Marking part of a pattern as a subpattern does two things:
-
-
-1. It localizes a set of alternatives. For example, the pattern
-
-
-
- cat(aract|erpillar|)
-
-
-
-matches one of the words "cat", "cataract", or "caterpillar". Without the
-parentheses, it would match "cataract", "erpillar" or the empty string.
-
-
-2. It sets up the subpattern as a capturing subpattern (as defined above).
-When the whole pattern matches, that portion of the subject string that matched
-the subpattern is passed back to the caller via the ovector argument of
-pcre_exec(). Opening parentheses are counted from left to right (starting
-from 1) to obtain the numbers of the capturing subpatterns.
-
-
-For example, if the string "the red king" is matched against the pattern
-
-
-
- the ((red|white) (king|queen))
-
-
-
-the captured substrings are "red king", "red", and "king", and are numbered 1,
-2, and 3.
-
-
-The fact that plain parentheses fulfil two functions is not always helpful.
-There are often times when a grouping subpattern is required without a
-capturing requirement. If an opening parenthesis is followed by "?:", the
-subpattern does not do any capturing, and is not counted when computing the
-number of any subsequent capturing subpatterns. For example, if the string "the
-white queen" is matched against the pattern
-
-
-
- the ((?:red|white) (king|queen))
-
-
-
-the captured substrings are "white queen" and "queen", and are numbered 1 and
-2. The maximum number of captured substrings is 99, and the maximum number of
-all subpatterns, both capturing and non-capturing, is 200.
-
-
-As a convenient shorthand, if any option settings are required at the start of
-a non-capturing subpattern, the option letters may appear between the "?" and
-the ":". Thus the two patterns
-
-match exactly the same set of strings. Because alternative branches are tried
-from left to right, and options are not reset until the end of the subpattern
-is reached, an option setting in one branch does affect subsequent branches, so
-the above patterns match "SUNDAY" as well as "Saturday".
-
-Repetition is specified by quantifiers, which can follow any of the following
-items:
-
-
-
- a single character, possibly escaped
- the . metacharacter
- a character class
- a back reference (see next section)
- a parenthesized subpattern (unless it is an assertion - see below)
-
-
-
-The general repetition quantifier specifies a minimum and maximum number of
-permitted matches, by giving the two numbers in curly brackets (braces),
-separated by a comma. The numbers must be less than 65536, and the first must
-be less than or equal to the second. For example:
-
-
-
- z{2,4}
-
-
-
-matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special
-character. If the second number is omitted, but the comma is present, there is
-no upper limit; if the second number and the comma are both omitted, the
-quantifier specifies an exact number of required matches. Thus
-
-
-
- [aeiou]{3,}
-
-
-
-matches at least 3 successive vowels, but may match many more, while
-
-
-
- \d{8}
-
-
-
-matches exactly 8 digits. An opening curly bracket that appears in a position
-where a quantifier is not allowed, or one that does not match the syntax of a
-quantifier, is taken as a literal character. For example, {,6} is not a
-quantifier, but a literal string of four characters.
-
-
-The quantifier {0} is permitted, causing the expression to behave as if the
-previous item and the quantifier were not present.
-
-
-For convenience (and historical compatibility) the three most common
-quantifiers have single-character abbreviations:
-
-
-
- * is equivalent to {0,}
- + is equivalent to {1,}
- ? is equivalent to {0,1}
-
-
-
-It is possible to construct infinite loops by following a subpattern that can
-match no characters with a quantifier that has no upper limit, for example:
-
-
-
- (a?)*
-
-
-
-Earlier versions of Perl and PCRE used to give an error at compile time for
-such patterns. However, because there are cases where this can be useful, such
-patterns are now accepted, but if any repetition of the subpattern does in fact
-match no characters, the loop is forcibly broken.
-
-
-By default, the quantifiers are "greedy", that is, they match as much as
-possible (up to the maximum number of permitted times), without causing the
-rest of the pattern to fail. The classic example of where this gives problems
-is in trying to match comments in C programs. These appear between the
-sequences /* and */ and within the sequence, individual * and / characters may
-appear. An attempt to match C comments by applying the pattern
-
-
-
- /\*.*\*/
-
-
-
-to the string
-
-
-
- /* first command */ not comment /* second comment */
-
-
-
-fails, because it matches the entire string owing to the greediness of the .*
-item.
-
-
-However, if a quantifier is followed by a question mark, it ceases to be
-greedy, and instead matches the minimum number of times possible, so the
-pattern
-
-
-
- /\*.*?\*/
-
-
-
-does the right thing with the C comments. The meaning of the various
-quantifiers is not otherwise changed, just the preferred number of matches.
-Do not confuse this use of question mark with its use as a quantifier in its
-own right. Because it has two uses, it can sometimes appear doubled, as in
-
-
-
- \d??\d
-
-
-
-which matches one digit by preference, but can match two if that is the only
-way the rest of the pattern matches.
-
-
-If the PCRE_UNGREEDY option is set (an option which is not available in Perl),
-the quantifiers are not greedy by default, but individual ones can be made
-greedy by following them with a question mark. In other words, it inverts the
-default behaviour.
-
-
-When a parenthesized subpattern is quantified with a minimum repeat count that
-is greater than 1 or with a limited maximum, more store is required for the
-compiled pattern, in proportion to the size of the minimum or maximum.
-
-
-If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent
-to Perl's /s) is set, thus allowing the . to match newlines, the pattern is
-implicitly anchored, because whatever follows will be tried against every
-character position in the subject string, so there is no point in retrying the
-overall match at any position after the first. PCRE treats such a pattern as
-though it were preceded by \A. In cases where it is known that the subject
-string contains no newlines, it is worth setting PCRE_DOTALL when the pattern
-begins with .* in order to obtain this optimization, or alternatively using ^
-to indicate anchoring explicitly.
-
-
-When a capturing subpattern is repeated, the value captured is the substring
-that matched the final iteration. For example, after
-
-
-
- (tweedle[dume]{3}\s*)+
-
-
-
-has matched "tweedledum tweedledee" the value of the captured substring is
-"tweedledee". However, if there are nested capturing subpatterns, the
-corresponding captured values may have been set in previous iterations. For
-example, after
-
-
-
- /(a|(b))+/
-
-
-
-matches "aba" the value of the second captured substring is "b".
-
-Outside a character class, a backslash followed by a digit greater than 0 (and
-possibly further digits) is a back reference to a capturing subpattern earlier
-(i.e. to its left) in the pattern, provided there have been that many previous
-capturing left parentheses.
-
-
-However, if the decimal number following the backslash is less than 10, it is
-always taken as a back reference, and causes an error only if there are not
-that many capturing left parentheses in the entire pattern. In other words, the
-parentheses that are referenced need not be to the left of the reference for
-numbers less than 10. See the section entitled "Backslash" above for further
-details of the handling of digits following a backslash.
-
-
-A back reference matches whatever actually matched the capturing subpattern in
-the current subject string, rather than anything matching the subpattern
-itself. So the pattern
-
-
-
- (sens|respons)e and \1ibility
-
-
-
-matches "sense and sensibility" and "response and responsibility", but not
-"sense and responsibility". If caseful matching is in force at the time of the
-back reference, the case of letters is relevant. For example,
-
-
-
- ((?i)rah)\s+\1
-
-
-
-matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original
-capturing subpattern is matched caselessly.
-
-
-There may be more than one back reference to the same subpattern. If a
-subpattern has not actually been used in a particular match, any back
-references to it always fail. For example, the pattern
-
-
-
- (a|(bc))\2
-
-
-
-always fails if it starts to match "a" rather than "bc". Because there may be
-up to 99 back references, all digits following the backslash are taken
-as part of a potential back reference number. If the pattern continues with a
-digit character, some delimiter must be used to terminate the back reference.
-If the PCRE_EXTENDED option is set, this can be whitespace. Otherwise an empty
-comment can be used.
-
-
-A back reference that occurs inside the parentheses to which it refers fails
-when the subpattern is first used, so, for example, (a\1) never matches.
-However, such references can be useful inside repeated subpatterns. For
-example, the pattern
-
-
-
- (a|b\1)+
-
-
-
-matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of
-the subpattern, the back reference matches the character string corresponding
-to the previous iteration. In order for this to work, the pattern must be such
-that the first iteration does not need to match the back reference. This can be
-done using alternation, as in the example above, or by a quantifier with a
-minimum of zero.
-
-An assertion is a test on the characters following or preceding the current
-matching point that does not actually consume any characters. The simple
-assertions coded as \b, \B, \A, \Z, \z, ^ and $ are described above. More
-complicated assertions are coded as subpatterns. There are two kinds: those
-that look ahead of the current position in the subject string, and those that
-look behind it.
-
-
-An assertion subpattern is matched in the normal way, except that it does not
-cause the current matching position to be changed. Lookahead assertions start
-with (?= for positive assertions and (?! for negative assertions. For example,
-
-
-
- \w+(?=;)
-
-
-
-matches a word followed by a semicolon, but does not include the semicolon in
-the match, and
-
-
-
- foo(?!bar)
-
-
-
-matches any occurrence of "foo" that is not followed by "bar". Note that the
-apparently similar pattern
-
-
-
- (?!foo)bar
-
-
-
-does not find an occurrence of "bar" that is preceded by something other than
-"foo"; it finds any occurrence of "bar" whatsoever, because the assertion
-(?!foo) is always true when the next three characters are "bar". A
-lookbehind assertion is needed to achieve this effect.
-
-
-Lookbehind assertions start with (?<= for positive assertions and (?<! for
-negative assertions. For example,
-
-
-
- (?<!foo)bar
-
-
-
-does find an occurrence of "bar" that is not preceded by "foo". The contents of
-a lookbehind assertion are restricted such that all the strings it matches must
-have a fixed length. However, if there are several alternatives, they do not
-all have to have the same fixed length. Thus
-
-
-
- (?<=bullock|donkey)
-
-
-
-is permitted, but
-
-
-
- (?<!dogs?|cats?)
-
-
-
-causes an error at compile time. Branches that match different length strings
-are permitted only at the top level of a lookbehind assertion. This is an
-extension compared with Perl 5.005, which requires all branches to match the
-same length of string. An assertion such as
-
-
-
- (?<=ab(c|de))
-
-
-
-is not permitted, because its single top-level branch can match two different
-lengths, but it is acceptable if rewritten to use two top-level branches:
-
-
-
- (?<=abc|abde)
-
-
-
-The implementation of lookbehind assertions is, for each alternative, to
-temporarily move the current position back by the fixed width and then try to
-match. If there are insufficient characters before the current position, the
-match is deemed to fail. Lookbehinds in conjunction with once-only subpatterns
-can be particularly useful for matching at the ends of strings; an example is
-given at the end of the section on once-only subpatterns.
-
-
-Several assertions (of any sort) may occur in succession. For example,
-
-
-
- (?<=\d{3})(?<!999)foo
-
-
-
-matches "foo" preceded by three digits that are not "999". Notice that each of
-the assertions is applied independently at the same point in the subject
-string. First there is a check that the previous three characters are all
-digits, and then there is a check that the same three characters are not "999".
-This pattern does not match "foo" preceded by six characters, the first
-of which are digits and the last three of which are not "999". For example, it
-doesn't match "123abcfoo". A pattern to do that is
-
-
-
- (?<=\d{3}...)(?<!999)foo
-
-
-
-This time the first assertion looks at the preceding six characters, checking
-that the first three are digits, and then the second assertion checks that the
-preceding three characters are not "999".
-
-
-Assertions can be nested in any combination. For example,
-
-
-
- (?<=(?<!foo)bar)baz
-
-
-
-matches an occurrence of "baz" that is preceded by "bar" which in turn is not
-preceded by "foo", while
-
-
-
- (?<=\d{3}(?!999)...)foo
-
-
-
-is another pattern which matches "foo" preceded by three digits and any three
-characters that are not "999".
-
-
-Assertion subpatterns are not capturing subpatterns, and may not be repeated,
-because it makes no sense to assert the same thing several times. If any kind
-of assertion contains capturing subpatterns within it, these are counted for
-the purposes of numbering the capturing subpatterns in the whole pattern.
-However, substring capturing is carried out only for positive assertions,
-because it does not make sense for negative assertions.
-
-
-Assertions count towards the maximum of 200 parenthesized subpatterns.
-
-With both maximizing and minimizing repetition, failure of what follows
-normally causes the repeated item to be re-evaluated to see if a different
-number of repeats allows the rest of the pattern to match. Sometimes it is
-useful to prevent this, either to change the nature of the match, or to cause
-it fail earlier than it otherwise might, when the author of the pattern knows
-there is no point in carrying on.
-
-
-Consider, for example, the pattern \d+foo when applied to the subject line
-
-
-
- 123456bar
-
-
-
-After matching all 6 digits and then failing to match "foo", the normal
-action of the matcher is to try again with only 5 digits matching the \d+
-item, and then with 4, and so on, before ultimately failing. Once-only
-subpatterns provide the means for specifying that once a portion of the pattern
-has matched, it is not to be re-evaluated in this way, so the matcher would
-give up immediately on failing to match "foo" the first time. The notation is
-another kind of special parenthesis, starting with (?> as in this example:
-
-
-
- (?>\d+)bar
-
-
-
-This kind of parenthesis "locks up" the part of the pattern it contains once
-it has matched, and a failure further into the pattern is prevented from
-backtracking into it. Backtracking past it to previous items, however, works as
-normal.
-
-
-An alternative description is that a subpattern of this type matches the string
-of characters that an identical standalone pattern would match, if anchored at
-the current point in the subject string.
-
-
-Once-only subpatterns are not capturing subpatterns. Simple cases such as the
-above example can be thought of as a maximizing repeat that must swallow
-everything it can. So, while both \d+ and \d+? are prepared to adjust the
-number of digits they match in order to make the rest of the pattern match,
-(?>\d+) can only match an entire sequence of digits.
-
-
-This construction can of course contain arbitrarily complicated subpatterns,
-and it can be nested.
-
-
-Once-only subpatterns can be used in conjunction with lookbehind assertions to
-specify efficient matching at the end of the subject string. Consider a simple
-pattern such as
-
-
-
- abcd$
-
-
-
-when applied to a long string which does not match. Because matching proceeds
-from left to right, PCRE will look for each "a" in the subject and then see if
-what follows matches the rest of the pattern. If the pattern is specified as
-
-
-
- ^.*abcd$
-
-
-
-the initial .* matches the entire string at first, but when this fails (because
-there is no following "a"), it backtracks to match all but the last character,
-then all but the last two characters, and so on. Once again the search for "a"
-covers the entire string, from right to left, so we are no better off. However,
-if the pattern is written as
-
-
-
- ^(?>.*)(?<=abcd)
-
-
-
-there can be no backtracking for the .* item; it can match only the entire
-string. The subsequent lookbehind assertion does a single test on the last four
-characters. If it fails, the match fails immediately. For long strings, this
-approach makes a significant difference to the processing time.
-
-
-When a pattern contains an unlimited repeat inside a subpattern that can itself
-be repeated an unlimited number of times, the use of a once-only subpattern is
-the only way to avoid some failing matches taking a very long time indeed.
-The pattern
-
-
-
- (\D+|<\d+>)*[!?]
-
-
-
-matches an unlimited number of substrings that either consist of non-digits, or
-digits enclosed in <>, followed by either ! or ?. When it matches, it runs
-quickly. However, if it is applied to
-
-it takes a long time before reporting failure. This is because the string can
-be divided between the two repeats in a large number of ways, and all have to
-be tried. (The example used [!?] rather than a single character at the end,
-because both PCRE and Perl have an optimization that allows for fast failure
-when a single character is used. They remember the last single character that
-is required for a match, and fail early if it is not present in the string.)
-If the pattern is changed to
-
-
-
- ((?>\D+)|<\d+>)*[!?]
-
-
-
-sequences of non-digits cannot be broken, and failure happens quickly.
-
-It is possible to cause the matching process to obey a subpattern
-conditionally or to choose between two alternative subpatterns, depending on
-the result of an assertion, or whether a previous capturing subpattern matched
-or not. The two possible forms of conditional subpattern are
-
-If the condition is satisfied, the yes-pattern is used; otherwise the
-no-pattern (if present) is used. If there are more than two alternatives in the
-subpattern, a compile-time error occurs.
-
-
-There are two kinds of condition. If the text between the parentheses consists
-of a sequence of digits, the condition is satisfied if the capturing subpattern
-of that number has previously matched. The number must be greater than zero.
-Consider the following pattern, which contains non-significant white space to
-make it more readable (assume the PCRE_EXTENDED option) and to divide it into
-three parts for ease of discussion:
-
-
-
- ( \( )? [^()]+ (?(1) \) )
-
-
-
-The first part matches an optional opening parenthesis, and if that
-character is present, sets it as the first captured substring. The second part
-matches one or more characters that are not parentheses. The third part is a
-conditional subpattern that tests whether the first set of parentheses matched
-or not. If they did, that is, if subject started with an opening parenthesis,
-the condition is true, and so the yes-pattern is executed and a closing
-parenthesis is required. Otherwise, since no-pattern is not present, the
-subpattern matches nothing. In other words, this pattern matches a sequence of
-non-parentheses, optionally enclosed in parentheses.
-
-
-If the condition is not a sequence of digits, it must be an assertion. This may
-be a positive or negative lookahead or lookbehind assertion. Consider this
-pattern, again containing non-significant white space, and with the two
-alternatives on the second line:
-
-The condition is a positive lookahead assertion that matches an optional
-sequence of non-letters followed by a letter. In other words, it tests for the
-presence of at least one letter in the subject. If a letter is found, the
-subject is matched against the first alternative; otherwise it is matched
-against the second. This pattern matches strings in one of the two forms
-dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.
-
-The sequence (?# marks the start of a comment which continues up to the next
-closing parenthesis. Nested parentheses are not permitted. The characters
-that make up a comment play no part in the pattern matching at all.
-
-
-If the PCRE_EXTENDED option is set, an unescaped # character outside a
-character class introduces a comment that continues up to the next newline
-character in the pattern.
-
-Consider the problem of matching a string in parentheses, allowing for
-unlimited nested parentheses. Without the use of recursion, the best that can
-be done is to use a pattern that matches up to some fixed depth of nesting. It
-is not possible to handle an arbitrary nesting depth. Perl 5.6 has provided an
-experimental facility that allows regular expressions to recurse (amongst other
-things). It does this by interpolating Perl code in the expression at run time,
-and the code can refer to the expression itself. A Perl pattern to solve the
-parentheses problem can be created like this:
-
-The (?p{...}) item interpolates Perl code at run time, and in this case refers
-recursively to the pattern in which it appears. Obviously, PCRE cannot support
-the interpolation of Perl code. Instead, the special item (?R) is provided for
-the specific case of recursion. This PCRE pattern solves the parentheses
-problem (assume the PCRE_EXTENDED option is set so that white space is
-ignored):
-
-
-
- \( ( (?>[^()]+) | (?R) )* \)
-
-
-
-First it matches an opening parenthesis. Then it matches any number of
-substrings which can either be a sequence of non-parentheses, or a recursive
-match of the pattern itself (i.e. a correctly parenthesized substring). Finally
-there is a closing parenthesis.
-
-
-This particular example pattern contains nested unlimited repeats, and so the
-use of a once-only subpattern for matching strings of non-parentheses is
-important when applying the pattern to strings that do not match. For example,
-when it is applied to
-
-it yields "no match" quickly. However, if a once-only subpattern is not used,
-the match runs for a very long time indeed because there are so many different
-ways the + and * repeats can carve up the subject, and all have to be tested
-before failure can be reported.
-
-
-The values set for any capturing subpatterns are those from the outermost level
-of the recursion at which the subpattern value is set. If the pattern above is
-matched against
-
-
-
- (ab(cd)ef)
-
-
-
-the value for the capturing parentheses is "ef", which is the last value taken
-on at the top level. If additional parentheses are added, giving
-
-
-
- \( ( ( (?>[^()]+) | (?R) )* ) \)
- ^ ^
- ^ ^
-
-the string they capture is "ab(cd)ef", the contents of the top level
-parentheses. If there are more than 15 capturing parentheses in a pattern, PCRE
-has to obtain extra memory to store data during a recursion, which it does by
-using pcre_malloc, freeing it via pcre_free afterwards. If no
-memory can be obtained, it saves data for the first 15 capturing parentheses
-only, as there is no way to give an out-of-memory error from within a
-recursion.
-
-
-Certain items that may appear in patterns are more efficient than others. It is
-more efficient to use a character class like [aeiou] than a set of alternatives
-such as (a|e|i|o|u). In general, the simplest construction that provides the
-required behaviour is usually the most efficient. Jeffrey Friedl's book
-contains a lot of discussion about optimizing regular expressions for efficient
-performance.
-
-
-When a pattern begins with .* and the PCRE_DOTALL option is set, the pattern is
-implicitly anchored by PCRE, since it can match only at the start of a subject
-string. However, if PCRE_DOTALL is not set, PCRE cannot make this optimization,
-because the . metacharacter does not then match a newline, and if the subject
-string contains newlines, the pattern may match from the character immediately
-following one of them instead of from the very start. For example, the pattern
-
-
-
- (.*) second
-
-
-
-matches the subject "first\nand second" (where \n stands for a newline
-character) with the first captured substring being "and". In order to do this,
-PCRE has to retry the match starting after every newline in the subject.
-
-
-If you are using such a pattern with subject strings that do not contain
-newlines, the best performance is obtained by setting PCRE_DOTALL, or starting
-the pattern with ^.* to indicate explicit anchoring. That saves PCRE from
-having to scan along the subject looking for a newline to restart at.
-
-
-Beware of patterns that contain nested indefinite repeats. These can take a
-long time to run when applied to a string that does not match. Consider the
-pattern fragment
-
-
-
- (a+)*
-
-
-
-This can match "aaaa" in 33 different ways, and this number increases very
-rapidly as the string gets longer. (The * repeat can match 0, 1, 2, 3, or 4
-times, and for each of those cases other than 0, the + repeats can match
-different numbers of times.) When the remainder of the pattern is such that the
-entire match is going to fail, PCRE has in principle to try every possible
-variation, and this can take an extremely long time.
-
-
-An optimization catches some of the more simple cases such as
-
-
-
- (a+)*b
-
-
-
-where a literal character follows. Before embarking on the standard matching
-procedure, PCRE checks that there is a "b" later in the subject string, and if
-there is not, it fails the match immediately. However, when there is no
-following literal this optimization cannot be used. You can see the difference
-by comparing the behaviour of
-
-
-
- (a+)*\d
-
-
-
-with the pattern above. The former gives a failure almost instantly when
-applied to a whole line of "a" characters, whereas the latter takes an
-appreciable time with strings longer than about 20 characters.
-
-Starting at release 3.3, PCRE has some support for character strings encoded
-in the UTF-8 format. This is incomplete, and is regarded as experimental. In
-order to use it, you must configure PCRE to include UTF-8 support in the code,
-and, in addition, you must call pcre_compile() with the PCRE_UTF8 option
-flag. When you do this, both the pattern and any subject strings that are
-matched against it are treated as UTF-8 strings instead of just strings of
-bytes, but only in the cases that are mentioned below.
-
-
-If you compile PCRE with UTF-8 support, but do not use it at run time, the
-library will be a bit bigger, but the additional run time overhead is limited
-to testing the PCRE_UTF8 flag in several places, so should not be very large.
-
-
-PCRE assumes that the strings it is given contain valid UTF-8 codes. It does
-not diagnose invalid UTF-8 strings. If you pass invalid UTF-8 strings to PCRE,
-the results are undefined.
-
-
-Running with PCRE_UTF8 set causes these changes in the way PCRE works:
-
-
-1. In a pattern, the escape sequence \x{...}, where the contents of the braces
-is a string of hexadecimal digits, is interpreted as a UTF-8 character whose
-code number is the given hexadecimal number, for example: \x{1234}. This
-inserts from one to six literal bytes into the pattern, using the UTF-8
-encoding. If a non-hexadecimal digit appears between the braces, the item is
-not recognized.
-
-
-2. The original hexadecimal escape sequence, \xhh, generates a two-byte UTF-8
-character if its value is greater than 127.
-
-
-3. Repeat quantifiers are NOT correctly handled if they follow a multibyte
-character. For example, \x{100}* and \xc3+ do not work. If you want to
-repeat such characters, you must enclose them in non-capturing parentheses,
-for example (?:\x{100}), at present.
-
-
-4. The dot metacharacter matches one UTF-8 character instead of a single byte.
-
-
-5. Unlike literal UTF-8 characters, the dot metacharacter followed by a
-repeat quantifier does operate correctly on UTF-8 characters instead of
-single bytes.
-
-
-4. Although the \x{...} escape is permitted in a character class, characters
-whose values are greater than 255 cannot be included in a class.
-
-
-5. A class is matched against a UTF-8 character instead of just a single byte,
-but it can match only characters whose values are less than 256. Characters
-with greater values always fail to match a class.
-
-
-6. Repeated classes work correctly on multiple characters.
-
-
-7. Classes containing just a single character whose value is greater than 127
-(but less than 256), for example, [\x80] or [^\x{93}], do not work because
-these are optimized into single byte matches. In the first case, of course,
-the class brackets are just redundant.
-
-
-8. Lookbehind assertions move backwards in the subject by a fixed number of
-characters instead of a fixed number of bytes. Simple cases have been tested
-to work correctly, but there may be hidden gotchas herein.
-
-
-9. The character types such as \d and \w do not work correctly with UTF-8
-characters. They continue to test a single byte.
-
-
-10. Anything not explicitly mentioned here continues to work in bytes rather
-than in characters.
-
-
-The following UTF-8 features of Perl 5.6 are not implemented:
-
-
-1. The escape sequence \C to match a single byte.
-
-
-2. The use of Unicode tables and properties and escapes \p, \P, and \X.
-
- the 250th anniversary of the death of J.S. Bach.
-
-
-Copyright (c) 1997-2000 University of Cambridge.
diff --git a/pcre/doc/pcre.txt b/pcre/doc/pcre.txt
deleted file mode 100644
index 1db4b537..00000000
--- a/pcre/doc/pcre.txt
+++ /dev/null
@@ -1,2125 +0,0 @@
-NAME
- pcre - Perl-compatible regular expressions.
-
-
-
-SYNOPSIS
- #include
-
- pcre *pcre_compile(const char *pattern, int options,
- const char **errptr, int *erroffset,
- const unsigned char *tableptr);
-
- pcre_extra *pcre_study(const pcre *code, int options,
- const char **errptr);
-
- int pcre_exec(const pcre *code, const pcre_extra *extra,
- const char *subject, int length, int startoffset,
- int options, int *ovector, int ovecsize);
-
- int pcre_copy_substring(const char *subject, int *ovector,
- int stringcount, int stringnumber, char *buffer,
- int buffersize);
-
- int pcre_get_substring(const char *subject, int *ovector,
- int stringcount, int stringnumber,
- const char **stringptr);
-
- int pcre_get_substring_list(const char *subject,
- int *ovector, int stringcount, const char ***listptr);
-
- void pcre_free_substring(const char *stringptr);
-
- void pcre_free_substring_list(const char **stringptr);
-
- const unsigned char *pcre_maketables(void);
-
- int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
- int what, void *where);
-
- int pcre_info(const pcre *code, int *optptr, *firstcharptr);
-
- char *pcre_version(void);
-
- void *(*pcre_malloc)(size_t);
-
- void (*pcre_free)(void *);
-
-
-
-
-DESCRIPTION
- The PCRE library is a set of functions that implement regu-
- lar expression pattern matching using the same syntax and
- semantics as Perl 5, with just a few differences (see
-
- below). The current implementation corresponds to Perl
- 5.005, with some additional features from later versions.
- This includes some experimental, incomplete support for
- UTF-8 encoded strings. Details of exactly what is and what
- is not supported are given below.
-
- PCRE has its own native API, which is described in this
- document. There is also a set of wrapper functions that
- correspond to the POSIX regular expression API. These are
- described in the pcreposix documentation.
-
- The native API function prototypes are defined in the header
- file pcre.h, and on Unix systems the library itself is
- called libpcre.a, so can be accessed by adding -lpcre to the
- command for linking an application which calls it. The
- header file defines the macros PCRE_MAJOR and PCRE_MINOR to
- contain the major and minor release numbers for the library.
- Applications can use these to include support for different
- releases.
-
- The functions pcre_compile(), pcre_study(), and pcre_exec()
- are used for compiling and matching regular expressions.
-
- The functions pcre_copy_substring(), pcre_get_substring(),
- and pcre_get_substring_list() are convenience functions for
- extracting captured substrings from a matched subject
- string; pcre_free_substring() and pcre_free_substring_list()
- are also provided, to free the memory used for extracted
- strings.
-
- The function pcre_maketables() is used (optionally) to build
- a set of character tables in the current locale for passing
- to pcre_compile().
-
- The function pcre_fullinfo() is used to find out information
- about a compiled pattern; pcre_info() is an obsolete version
- which returns only some of the available information, but is
- retained for backwards compatibility. The function
- pcre_version() returns a pointer to a string containing the
- version of PCRE and its date of release.
-
- The global variables pcre_malloc and pcre_free initially
- contain the entry points of the standard malloc() and free()
- functions respectively. PCRE calls the memory management
- functions via these variables, so a calling program can
- replace them if it wishes to intercept the calls. This
- should be done before calling any PCRE functions.
-
-
-
-MULTI-THREADING
- The PCRE functions can be used in multi-threading
-
-
-
-
-
-SunOS 5.8 Last change: 2
-
-
-
- applications, with the proviso that the memory management
- functions pointed to by pcre_malloc and pcre_free are shared
- by all threads.
-
- The compiled form of a regular expression is not altered
- during matching, so the same compiled pattern can safely be
- used by several threads at once.
-
-
-
-COMPILING A PATTERN
- The function pcre_compile() is called to compile a pattern
- into an internal form. The pattern is a C string terminated
- by a binary zero, and is passed in the argument pattern. A
- pointer to a single block of memory that is obtained via
- pcre_malloc is returned. This contains the compiled code and
- related data. The pcre type is defined for this for conveni-
- ence, but in fact pcre is just a typedef for void, since the
- contents of the block are not externally defined. It is up
- to the caller to free the memory when it is no longer
- required.
-
- The size of a compiled pattern is roughly proportional to
- the length of the pattern string, except that each character
- class (other than those containing just a single character,
- negated or not) requires 33 bytes, and repeat quantifiers
- with a minimum greater than one or a bounded maximum cause
- the relevant portions of the compiled pattern to be repli-
- cated.
-
- The options argument contains independent bits that affect
- the compilation. It should be zero if no options are
- required. Some of the options, in particular, those that are
- compatible with Perl, can also be set and unset from within
- the pattern (see the detailed description of regular expres-
- sions below). For these options, the contents of the options
- argument specifies their initial settings at the start of
- compilation and execution. The PCRE_ANCHORED option can be
- set at the time of matching as well as at compile time.
-
- If errptr is NULL, pcre_compile() returns NULL immediately.
- Otherwise, if compilation of a pattern fails, pcre_compile()
- returns NULL, and sets the variable pointed to by errptr to
- point to a textual error message. The offset from the start
- of the pattern to the character where the error was
- discovered is placed in the variable pointed to by
- erroffset, which must not be NULL. If it is, an immediate
- error is given.
-
- If the final argument, tableptr, is NULL, PCRE uses a
- default set of character tables which are built when it is
- compiled, using the default C locale. Otherwise, tableptr
- must be the result of a call to pcre_maketables(). See the
- section on locale support below.
-
- The following option bits are defined in the header file:
-
- PCRE_ANCHORED
-
- If this bit is set, the pattern is forced to be "anchored",
- that is, it is constrained to match only at the start of the
- string which is being searched (the "subject string"). This
- effect can also be achieved by appropriate constructs in the
- pattern itself, which is the only way to do it in Perl.
-
- PCRE_CASELESS
-
- If this bit is set, letters in the pattern match both upper
- and lower case letters. It is equivalent to Perl's /i
- option.
-
- PCRE_DOLLAR_ENDONLY
-
- If this bit is set, a dollar metacharacter in the pattern
- matches only at the end of the subject string. Without this
- option, a dollar also matches immediately before the final
- character if it is a newline (but not before any other new-
- lines). The PCRE_DOLLAR_ENDONLY option is ignored if
- PCRE_MULTILINE is set. There is no equivalent to this option
- in Perl.
-
- PCRE_DOTALL
-
- If this bit is set, a dot metacharater in the pattern
- matches all characters, including newlines. Without it, new-
- lines are excluded. This option is equivalent to Perl's /s
- option. A negative class such as [^a] always matches a new-
- line character, independent of the setting of this option.
-
- PCRE_EXTENDED
-
- If this bit is set, whitespace data characters in the pat-
- tern are totally ignored except when escaped or inside a
- character class, and characters between an unescaped # out-
- side a character class and the next newline character,
- inclusive, are also ignored. This is equivalent to Perl's /x
- option, and makes it possible to include comments inside
- complicated patterns. Note, however, that this applies only
- to data characters. Whitespace characters may never appear
- within special character sequences in a pattern, for example
- within the sequence (?( which introduces a conditional sub-
- pattern.
-
- PCRE_EXTRA
-
- This option was invented in order to turn on additional
- functionality of PCRE that is incompatible with Perl, but it
- is currently of very little use. When set, any backslash in
- a pattern that is followed by a letter that has no special
- meaning causes an error, thus reserving these combinations
- for future expansion. By default, as in Perl, a backslash
- followed by a letter with no special meaning is treated as a
- literal. There are at present no other features controlled
- by this option. It can also be set by a (?X) option setting
- within a pattern.
-
- PCRE_MULTILINE
-
- By default, PCRE treats the subject string as consisting of
- a single "line" of characters (even if it actually contains
- several newlines). The "start of line" metacharacter (^)
- matches only at the start of the string, while the "end of
- line" metacharacter ($) matches only at the end of the
- string, or before a terminating newline (unless
- PCRE_DOLLAR_ENDONLY is set). This is the same as Perl.
-
- When PCRE_MULTILINE it is set, the "start of line" and "end
- of line" constructs match immediately following or immedi-
- ately before any newline in the subject string, respec-
- tively, as well as at the very start and end. This is
- equivalent to Perl's /m option. If there are no "\n" charac-
- ters in a subject string, or no occurrences of ^ or $ in a
- pattern, setting PCRE_MULTILINE has no effect.
-
- PCRE_UNGREEDY
-
- This option inverts the "greediness" of the quantifiers so
- that they are not greedy by default, but become greedy if
- followed by "?". It is not compatible with Perl. It can also
- be set by a (?U) option setting within the pattern.
-
- PCRE_UTF8
-
- This option causes PCRE to regard both the pattern and the
- subject as strings of UTF-8 characters instead of just byte
- strings. However, it is available only if PCRE has been
- built to include UTF-8 support. If not, the use of this
- option provokes an error. Support for UTF-8 is new, experi-
- mental, and incomplete. Details of exactly what it entails
- are given below.
-
-
-
-STUDYING A PATTERN
- When a pattern is going to be used several times, it is
- worth spending more time analyzing it in order to speed up
- the time taken for matching. The function pcre_study() takes
-
- a pointer to a compiled pattern as its first argument, and
- returns a pointer to a pcre_extra block (another void
- typedef) containing additional information about the pat-
- tern; this can be passed to pcre_exec(). If no additional
- information is available, NULL is returned.
-
- The second argument contains option bits. At present, no
- options are defined for pcre_study(), and this argument
- should always be zero.
-
- The third argument for pcre_study() is a pointer to an error
- message. If studying succeeds (even if no data is returned),
- the variable it points to is set to NULL. Otherwise it
- points to a textual error message.
-
- At present, studying a pattern is useful only for non-
- anchored patterns that do not have a single fixed starting
- character. A bitmap of possible starting characters is
- created.
-
-
-
-LOCALE SUPPORT
- PCRE handles caseless matching, and determines whether char-
- acters are letters, digits, or whatever, by reference to a
- set of tables. The library contains a default set of tables
- which is created in the default C locale when PCRE is com-
- piled. This is used when the final argument of
- pcre_compile() is NULL, and is sufficient for many applica-
- tions.
-
- An alternative set of tables can, however, be supplied. Such
- tables are built by calling the pcre_maketables() function,
- which has no arguments, in the relevant locale. The result
- can then be passed to pcre_compile() as often as necessary.
- For example, to build and use tables that are appropriate
- for the French locale (where accented characters with codes
- greater than 128 are treated as letters), the following code
- could be used:
-
- setlocale(LC_CTYPE, "fr");
- tables = pcre_maketables();
- re = pcre_compile(..., tables);
-
- The tables are built in memory that is obtained via
- pcre_malloc. The pointer that is passed to pcre_compile is
- saved with the compiled pattern, and the same tables are
- used via this pointer by pcre_study() and pcre_exec(). Thus
- for any single pattern, compilation, studying and matching
- all happen in the same locale, but different patterns can be
- compiled in different locales. It is the caller's responsi-
- bility to ensure that the memory containing the tables
- remains available for as long as it is needed.
-
-
-
-INFORMATION ABOUT A PATTERN
- The pcre_fullinfo() function returns information about a
- compiled pattern. It replaces the obsolete pcre_info() func-
- tion, which is nevertheless retained for backwards compabil-
- ity (and is documented below).
-
- The first argument for pcre_fullinfo() is a pointer to the
- compiled pattern. The second argument is the result of
- pcre_study(), or NULL if the pattern was not studied. The
- third argument specifies which piece of information is
- required, while the fourth argument is a pointer to a vari-
- able to receive the data. The yield of the function is zero
- for success, or one of the following negative numbers:
-
- PCRE_ERROR_NULL the argument code was NULL
- the argument where was NULL
- PCRE_ERROR_BADMAGIC the "magic number" was not found
- PCRE_ERROR_BADOPTION the value of what was invalid
-
- The possible values for the third argument are defined in
- pcre.h, and are as follows:
-
- PCRE_INFO_OPTIONS
-
- Return a copy of the options with which the pattern was com-
- piled. The fourth argument should point to au unsigned long
- int variable. These option bits are those specified in the
- call to pcre_compile(), modified by any top-level option
- settings within the pattern itself, and with the
- PCRE_ANCHORED bit forcibly set if the form of the pattern
- implies that it can match only at the start of a subject
- string.
-
- PCRE_INFO_SIZE
-
- Return the size of the compiled pattern, that is, the value
- that was passed as the argument to pcre_malloc() when PCRE
- was getting memory in which to place the compiled data. The
- fourth argument should point to a size_t variable.
-
- PCRE_INFO_CAPTURECOUNT
-
- Return the number of capturing subpatterns in the pattern.
- The fourth argument should point to an int variable.
-
- PCRE_INFO_BACKREFMAX
-
- Return the number of the highest back reference in the
- pattern. The fourth argument should point to an int vari-
- able. Zero is returned if there are no back references.
-
- PCRE_INFO_FIRSTCHAR
-
- Return information about the first character of any matched
- string, for a non-anchored pattern. If there is a fixed
- first character, e.g. from a pattern such as
- (cat|cow|coyote), it is returned in the integer pointed to
- by where. Otherwise, if either
-
- (a) the pattern was compiled with the PCRE_MULTILINE option,
- and every branch starts with "^", or
-
- (b) every branch of the pattern starts with ".*" and
- PCRE_DOTALL is not set (if it were set, the pattern would be
- anchored),
-
- -1 is returned, indicating that the pattern matches only at
- the start of a subject string or after any "\n" within the
- string. Otherwise -2 is returned. For anchored patterns, -2
- is returned.
-
- PCRE_INFO_FIRSTTABLE
-
- If the pattern was studied, and this resulted in the con-
- struction of a 256-bit table indicating a fixed set of char-
- acters for the first character in any matching string, a
- pointer to the table is returned. Otherwise NULL is
- returned. The fourth argument should point to an unsigned
- char * variable.
-
- PCRE_INFO_LASTLITERAL
-
- For a non-anchored pattern, return the value of the right-
- most literal character which must exist in any matched
- string, other than at its start. The fourth argument should
- point to an int variable. If there is no such character, or
- if the pattern is anchored, -1 is returned. For example, for
- the pattern /a\d+z\d+/ the returned value is 'z'.
-
- The pcre_info() function is now obsolete because its inter-
- face is too restrictive to return all the available data
- about a compiled pattern. New programs should use
- pcre_fullinfo() instead. The yield of pcre_info() is the
- number of capturing subpatterns, or one of the following
- negative numbers:
-
- PCRE_ERROR_NULL the argument code was NULL
- PCRE_ERROR_BADMAGIC the "magic number" was not found
-
- If the optptr argument is not NULL, a copy of the options
- with which the pattern was compiled is placed in the integer
- it points to (see PCRE_INFO_OPTIONS above).
-
- If the pattern is not anchored and the firstcharptr argument
- is not NULL, it is used to pass back information about the
- first character of any matched string (see
- PCRE_INFO_FIRSTCHAR above).
-
-
-
-MATCHING A PATTERN
- The function pcre_exec() is called to match a subject string
- against a pre-compiled pattern, which is passed in the code
- argument. If the pattern has been studied, the result of the
- study should be passed in the extra argument. Otherwise this
- must be NULL.
-
- The PCRE_ANCHORED option can be passed in the options argu-
- ment, whose unused bits must be zero. However, if a pattern
- was compiled with PCRE_ANCHORED, or turned out to be
- anchored by virtue of its contents, it cannot be made
- unachored at matching time.
-
- There are also three further options that can be set only at
- matching time:
-
- PCRE_NOTBOL
-
- The first character of the string is not the beginning of a
- line, so the circumflex metacharacter should not match
- before it. Setting this without PCRE_MULTILINE (at compile
- time) causes circumflex never to match.
-
- PCRE_NOTEOL
-
- The end of the string is not the end of a line, so the dol-
- lar metacharacter should not match it nor (except in multi-
- line mode) a newline immediately before it. Setting this
- without PCRE_MULTILINE (at compile time) causes dollar never
- to match.
-
- PCRE_NOTEMPTY
-
- An empty string is not considered to be a valid match if
- this option is set. If there are alternatives in the pat-
- tern, they are tried. If all the alternatives match the
- empty string, the entire match fails. For example, if the
- pattern
-
- a?b?
-
- is applied to a string not beginning with "a" or "b", it
- matches the empty string at the start of the subject. With
- PCRE_NOTEMPTY set, this match is not valid, so PCRE searches
- further into the string for occurrences of "a" or "b".
-
- Perl has no direct equivalent of PCRE_NOTEMPTY, but it does
- make a special case of a pattern match of the empty string
- within its split() function, and when using the /g modifier.
- It is possible to emulate Perl's behaviour after matching a
- null string by first trying the match again at the same
- offset with PCRE_NOTEMPTY set, and then if that fails by
- advancing the starting offset (see below) and trying an
- ordinary match again.
-
- The subject string is passed as a pointer in subject, a
- length in length, and a starting offset in startoffset.
- Unlike the pattern string, it may contain binary zero char-
- acters. When the starting offset is zero, the search for a
- match starts at the beginning of the subject, and this is by
- far the most common case.
-
- A non-zero starting offset is useful when searching for
- another match in the same subject by calling pcre_exec()
- again after a previous success. Setting startoffset differs
- from just passing over a shortened string and setting
- PCRE_NOTBOL in the case of a pattern that begins with any
- kind of lookbehind. For example, consider the pattern
-
- \Biss\B
-
- which finds occurrences of "iss" in the middle of words. (\B
- matches only if the current position in the subject is not a
- word boundary.) When applied to the string "Mississipi" the
- first call to pcre_exec() finds the first occurrence. If
- pcre_exec() is called again with just the remainder of the
- subject, namely "issipi", it does not match, because \B is
- always false at the start of the subject, which is deemed to
- be a word boundary. However, if pcre_exec() is passed the
- entire string again, but with startoffset set to 4, it finds
- the second occurrence of "iss" because it is able to look
- behind the starting point to discover that it is preceded by
- a letter.
-
- If a non-zero starting offset is passed when the pattern is
- anchored, one attempt to match at the given offset is tried.
- This can only succeed if the pattern does not require the
- match to be at the start of the subject.
-
- In general, a pattern matches a certain portion of the sub-
- ject, and in addition, further substrings from the subject
- may be picked out by parts of the pattern. Following the
- usage in Jeffrey Friedl's book, this is called "capturing"
- in what follows, and the phrase "capturing subpattern" is
- used for a fragment of a pattern that picks out a substring.
- PCRE supports several other kinds of parenthesized subpat-
- tern that do not cause substrings to be captured.
-
- Captured substrings are returned to the caller via a vector
- of integer offsets whose address is passed in ovector. The
- number of elements in the vector is passed in ovecsize. The
- first two-thirds of the vector is used to pass back captured
- substrings, each substring using a pair of integers. The
- remaining third of the vector is used as workspace by
- pcre_exec() while matching capturing subpatterns, and is not
- available for passing back information. The length passed in
- ovecsize should always be a multiple of three. If it is not,
- it is rounded down.
-
- When a match has been successful, information about captured
- substrings is returned in pairs of integers, starting at the
- beginning of ovector, and continuing up to two-thirds of its
- length at the most. The first element of a pair is set to
- the offset of the first character in a substring, and the
- second is set to the offset of the first character after the
- end of a substring. The first pair, ovector[0] and ovec-
- tor[1], identify the portion of the subject string matched
- by the entire pattern. The next pair is used for the first
- capturing subpattern, and so on. The value returned by
- pcre_exec() is the number of pairs that have been set. If
- there are no capturing subpatterns, the return value from a
- successful match is 1, indicating that just the first pair
- of offsets has been set.
-
- Some convenience functions are provided for extracting the
- captured substrings as separate strings. These are described
- in the following section.
-
- It is possible for an capturing subpattern number n+1 to
- match some part of the subject when subpattern n has not
- been used at all. For example, if the string "abc" is
- matched against the pattern (a|(z))(bc) subpatterns 1 and 3
- are matched, but 2 is not. When this happens, both offset
- values corresponding to the unused subpattern are set to -1.
-
- If a capturing subpattern is matched repeatedly, it is the
- last portion of the string that it matched that gets
- returned.
-
- If the vector is too small to hold all the captured sub-
- strings, it is used as far as possible (up to two-thirds of
- its length), and the function returns a value of zero. In
- particular, if the substring offsets are not of interest,
- pcre_exec() may be called with ovector passed as NULL and
- ovecsize as zero. However, if the pattern contains back
- references and the ovector isn't big enough to remember the
- related substrings, PCRE has to get additional memory for
- use during matching. Thus it is usually advisable to supply
- an ovector.
-
- Note that pcre_info() can be used to find out how many cap-
- turing subpatterns there are in a compiled pattern. The
- smallest size for ovector that will allow for n captured
- substrings in addition to the offsets of the substring
- matched by the whole pattern is (n+1)*3.
-
- If pcre_exec() fails, it returns a negative number. The fol-
- lowing are defined in the header file:
-
- PCRE_ERROR_NOMATCH (-1)
-
- The subject string did not match the pattern.
-
- PCRE_ERROR_NULL (-2)
-
- Either code or subject was passed as NULL, or ovector was
- NULL and ovecsize was not zero.
-
- PCRE_ERROR_BADOPTION (-3)
-
- An unrecognized bit was set in the options argument.
-
- PCRE_ERROR_BADMAGIC (-4)
-
- PCRE stores a 4-byte "magic number" at the start of the com-
- piled code, to catch the case when it is passed a junk
- pointer. This is the error it gives when the magic number
- isn't present.
-
- PCRE_ERROR_UNKNOWN_NODE (-5)
-
- While running the pattern match, an unknown item was encoun-
- tered in the compiled pattern. This error could be caused by
- a bug in PCRE or by overwriting of the compiled pattern.
-
- PCRE_ERROR_NOMEMORY (-6)
-
- If a pattern contains back references, but the ovector that
- is passed to pcre_exec() is not big enough to remember the
- referenced substrings, PCRE gets a block of memory at the
- start of matching to use for this purpose. If the call via
- pcre_malloc() fails, this error is given. The memory is
- freed at the end of matching.
-
-
-
-EXTRACTING CAPTURED SUBSTRINGS
- Captured substrings can be accessed directly by using the
-
-
-
-
-
-SunOS 5.8 Last change: 12
-
-
-
- offsets returned by pcre_exec() in ovector. For convenience,
- the functions pcre_copy_substring(), pcre_get_substring(),
- and pcre_get_substring_list() are provided for extracting
- captured substrings as new, separate, zero-terminated
- strings. A substring that contains a binary zero is
- correctly extracted and has a further zero added on the end,
- but the result does not, of course, function as a C string.
-
- The first three arguments are the same for all three func-
- tions: subject is the subject string which has just been
- successfully matched, ovector is a pointer to the vector of
- integer offsets that was passed to pcre_exec(), and
- stringcount is the number of substrings that were captured
- by the match, including the substring that matched the
- entire regular expression. This is the value returned by
- pcre_exec if it is greater than zero. If pcre_exec()
- returned zero, indicating that it ran out of space in ovec-
- tor, the value passed as stringcount should be the size of
- the vector divided by three.
-
- The functions pcre_copy_substring() and pcre_get_substring()
- extract a single substring, whose number is given as string-
- number. A value of zero extracts the substring that matched
- the entire pattern, while higher values extract the captured
- substrings. For pcre_copy_substring(), the string is placed
- in buffer, whose length is given by buffersize, while for
- pcre_get_substring() a new block of memory is obtained via
- pcre_malloc, and its address is returned via stringptr. The
- yield of the function is the length of the string, not
- including the terminating zero, or one of
-
- PCRE_ERROR_NOMEMORY (-6)
-
- The buffer was too small for pcre_copy_substring(), or the
- attempt to get memory failed for pcre_get_substring().
-
- PCRE_ERROR_NOSUBSTRING (-7)
-
- There is no substring whose number is stringnumber.
-
- The pcre_get_substring_list() function extracts all avail-
- able substrings and builds a list of pointers to them. All
- this is done in a single block of memory which is obtained
- via pcre_malloc. The address of the memory block is returned
- via listptr, which is also the start of the list of string
- pointers. The end of the list is marked by a NULL pointer.
- The yield of the function is zero if all went well, or
-
- PCRE_ERROR_NOMEMORY (-6)
-
- if the attempt to get the memory block failed.
-
- When any of these functions encounter a substring that is
- unset, which can happen when capturing subpattern number n+1
- matches some part of the subject, but subpattern n has not
- been used at all, they return an empty string. This can be
- distinguished from a genuine zero-length substring by
- inspecting the appropriate offset in ovector, which is nega-
- tive for unset substrings.
-
- The two convenience functions pcre_free_substring() and
- pcre_free_substring_list() can be used to free the memory
- returned by a previous call of pcre_get_substring() or
- pcre_get_substring_list(), respectively. They do nothing
- more than call the function pointed to by pcre_free, which
- of course could be called directly from a C program. How-
- ever, PCRE is used in some situations where it is linked via
- a special interface to another programming language which
- cannot use pcre_free directly; it is for these cases that
- the functions are provided.
-
-
-
-LIMITATIONS
- There are some size limitations in PCRE but it is hoped that
- they will never in practice be relevant. The maximum length
- of a compiled pattern is 65539 (sic) bytes. All values in
- repeating quantifiers must be less than 65536. The maximum
- number of capturing subpatterns is 99. The maximum number
- of all parenthesized subpatterns, including capturing sub-
- patterns, assertions, and other types of subpattern, is 200.
-
- The maximum length of a subject string is the largest posi-
- tive number that an integer variable can hold. However, PCRE
- uses recursion to handle subpatterns and indefinite repeti-
- tion. This means that the available stack space may limit
- the size of a subject string that can be processed by cer-
- tain patterns.
-
-
-
-DIFFERENCES FROM PERL
- The differences described here are with respect to Perl
- 5.005.
-
- 1. By default, a whitespace character is any character that
- the C library function isspace() recognizes, though it is
- possible to compile PCRE with alternative character type
- tables. Normally isspace() matches space, formfeed, newline,
- carriage return, horizontal tab, and vertical tab. Perl 5 no
- longer includes vertical tab in its set of whitespace char-
- acters. The \v escape that was in the Perl documentation for
- a long time was never in fact recognized. However, the char-
- acter itself was treated as whitespace at least up to 5.002.
- In 5.004 and 5.005 it does not match \s.
-
- 2. PCRE does not allow repeat quantifiers on lookahead
- assertions. Perl permits them, but they do not mean what you
- might think. For example, (?!a){3} does not assert that the
- next three characters are not "a". It just asserts that the
- next character is not "a" three times.
-
- 3. Capturing subpatterns that occur inside negative looka-
- head assertions are counted, but their entries in the
- offsets vector are never set. Perl sets its numerical vari-
- ables from any such patterns that are matched before the
- assertion fails to match something (thereby succeeding), but
- only if the negative lookahead assertion contains just one
- branch.
-
- 4. Though binary zero characters are supported in the sub-
- ject string, they are not allowed in a pattern string
- because it is passed as a normal C string, terminated by
- zero. The escape sequence "\0" can be used in the pattern to
- represent a binary zero.
-
- 5. The following Perl escape sequences are not supported:
- \l, \u, \L, \U, \E, \Q. In fact these are implemented by
- Perl's general string-handling and are not part of its pat-
- tern matching engine.
-
- 6. The Perl \G assertion is not supported as it is not
- relevant to single pattern matches.
-
- 7. Fairly obviously, PCRE does not support the (?{code}) and
- (?p{code}) constructions. However, there is some experimen-
- tal support for recursive patterns using the non-Perl item
- (?R).
-
- 8. There are at the time of writing some oddities in Perl
- 5.005_02 concerned with the settings of captured strings
- when part of a pattern is repeated. For example, matching
- "aba" against the pattern /^(a(b)?)+$/ sets $2 to the value
- "b", but matching "aabbaa" against /^(aa(bb)?)+$/ leaves $2
- unset. However, if the pattern is changed to
- /^(aa(b(b))?)+$/ then $2 (and $3) are set.
-
- In Perl 5.004 $2 is set in both cases, and that is also true
- of PCRE. If in the future Perl changes to a consistent state
- that is different, PCRE may change to follow.
-
- 9. Another as yet unresolved discrepancy is that in Perl
- 5.005_02 the pattern /^(a)?(?(1)a|b)+$/ matches the string
- "a", whereas in PCRE it does not. However, in both Perl and
- PCRE /^(a)?a/ matched against "a" leaves $1 unset.
-
- 10. PCRE provides some extensions to the Perl regular
- expression facilities:
-
- (a) Although lookbehind assertions must match fixed length
- strings, each alternative branch of a lookbehind assertion
- can match a different length of string. Perl 5.005 requires
- them all to have the same length.
-
- (b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not
- set, the $ meta- character matches only at the very end of
- the string.
-
- (c) If PCRE_EXTRA is set, a backslash followed by a letter
- with no special meaning is faulted.
-
- (d) If PCRE_UNGREEDY is set, the greediness of the repeti-
- tion quantifiers is inverted, that is, by default they are
- not greedy, but if followed by a question mark they are.
-
- (e) PCRE_ANCHORED can be used to force a pattern to be tried
- only at the start of the subject.
-
- (f) The PCRE_NOTBOL, PCRE_NOTEOL, and PCRE_NOTEMPTY options
- for pcre_exec() have no Perl equivalents.
-
- (g) The (?R) construct allows for recursive pattern matching
- (Perl 5.6 can do this using the (?p{code}) construct, which
- PCRE cannot of course support.)
-
-
-
-REGULAR EXPRESSION DETAILS
- The syntax and semantics of the regular expressions sup-
- ported by PCRE are described below. Regular expressions are
- also described in the Perl documentation and in a number of
- other books, some of which have copious examples. Jeffrey
- Friedl's "Mastering Regular Expressions", published by
- O'Reilly (ISBN 1-56592-257), covers them in great detail.
-
- The description here is intended as reference documentation.
- The basic operation of PCRE is on strings of bytes. However,
- there is the beginnings of some support for UTF-8 character
- strings. To use this support you must configure PCRE to
- include it, and then call pcre_compile() with the PCRE_UTF8
- option. How this affects the pattern matching is described
- in the final section of this document.
-
- A regular expression is a pattern that is matched against a
- subject string from left to right. Most characters stand for
- themselves in a pattern, and match the corresponding charac-
- ters in the subject. As a trivial example, the pattern
-
- The quick brown fox
-
- matches a portion of a subject string that is identical to
- itself. The power of regular expressions comes from the
- ability to include alternatives and repetitions in the pat-
- tern. These are encoded in the pattern by the use of meta-
- characters, which do not stand for themselves but instead
- are interpreted in some special way.
-
- There are two different sets of meta-characters: those that
- are recognized anywhere in the pattern except within square
- brackets, and those that are recognized in square brackets.
- Outside square brackets, the meta-characters are as follows:
-
- \ general escape character with several uses
- ^ assert start of subject (or line, in multiline
- mode)
- $ assert end of subject (or line, in multiline mode)
- . match any character except newline (by default)
- [ start character class definition
- | start of alternative branch
- ( start subpattern
- ) end subpattern
- ? extends the meaning of (
- also 0 or 1 quantifier
- also quantifier minimizer
- * 0 or more quantifier
- + 1 or more quantifier
- { start min/max quantifier
-
- Part of a pattern that is in square brackets is called a
- "character class". In a character class the only meta-
- characters are:
-
- \ general escape character
- ^ negate the class, but only if the first character
- - indicates character range
- ] terminates the character class
-
- The following sections describe the use of each of the
- meta-characters.
-
-
-
-BACKSLASH
- The backslash character has several uses. Firstly, if it is
- followed by a non-alphameric character, it takes away any
- special meaning that character may have. This use of
- backslash as an escape character applies both inside and
- outside character classes.
-
- For example, if you want to match a "*" character, you write
- "\*" in the pattern. This applies whether or not the follow-
- ing character would otherwise be interpreted as a meta-
- character, so it is always safe to precede a non-alphameric
- with "\" to specify that it stands for itself. In particu-
- lar, if you want to match a backslash, you write "\\".
-
- If a pattern is compiled with the PCRE_EXTENDED option, whi-
- tespace in the pattern (other than in a character class) and
- characters between a "#" outside a character class and the
- next newline character are ignored. An escaping backslash
- can be used to include a whitespace or "#" character as part
- of the pattern.
-
- A second use of backslash provides a way of encoding non-
- printing characters in patterns in a visible manner. There
- is no restriction on the appearance of non-printing charac-
- ters, apart from the binary zero that terminates a pattern,
- but when a pattern is being prepared by text editing, it is
- usually easier to use one of the following escape sequences
- than the binary character it represents:
-
- \a alarm, that is, the BEL character (hex 07)
- \cx "control-x", where x is any character
- \e escape (hex 1B)
- \f formfeed (hex 0C)
- \n newline (hex 0A)
- \r carriage return (hex 0D)
- \t tab (hex 09)
- \xhh character with hex code hh
- \ddd character with octal code ddd, or backreference
-
- The precise effect of "\cx" is as follows: if "x" is a lower
- case letter, it is converted to upper case. Then bit 6 of
- the character (hex 40) is inverted. Thus "\cz" becomes hex
- 1A, but "\c{" becomes hex 3B, while "\c;" becomes hex 7B.
-
- After "\x", up to two hexadecimal digits are read (letters
- can be in upper or lower case).
-
- After "\0" up to two further octal digits are read. In both
- cases, if there are fewer than two digits, just those that
- are present are used. Thus the sequence "\0\x\07" specifies
- two binary zeros followed by a BEL character. Make sure you
- supply two digits after the initial zero if the character
- that follows is itself an octal digit.
-
- The handling of a backslash followed by a digit other than 0
- is complicated. Outside a character class, PCRE reads it
- and any following digits as a decimal number. If the number
- is less than 10, or if there have been at least that many
- previous capturing left parentheses in the expression, the
- entire sequence is taken as a back reference. A description
- of how this works is given later, following the discussion
- of parenthesized subpatterns.
-
- Inside a character class, or if the decimal number is
- greater than 9 and there have not been that many capturing
- subpatterns, PCRE re-reads up to three octal digits follow-
- ing the backslash, and generates a single byte from the
- least significant 8 bits of the value. Any subsequent digits
- stand for themselves. For example:
-
- \040 is another way of writing a space
- \40 is the same, provided there are fewer than 40
- previous capturing subpatterns
- \7 is always a back reference
- \11 might be a back reference, or another way of
- writing a tab
- \011 is always a tab
- \0113 is a tab followed by the character "3"
- \113 is the character with octal code 113 (since there
- can be no more than 99 back references)
- \377 is a byte consisting entirely of 1 bits
- \81 is either a back reference, or a binary zero
- followed by the two characters "8" and "1"
-
- Note that octal values of 100 or greater must not be intro-
- duced by a leading zero, because no more than three octal
- digits are ever read.
-
- All the sequences that define a single byte value can be
- used both inside and outside character classes. In addition,
- inside a character class, the sequence "\b" is interpreted
- as the backspace character (hex 08). Outside a character
- class it has a different meaning (see below).
-
- The third use of backslash is for specifying generic charac-
- ter types:
-
- \d any decimal digit
- \D any character that is not a decimal digit
- \s any whitespace character
- \S any character that is not a whitespace character
- \w any "word" character
- \W any "non-word" character
-
- Each pair of escape sequences partitions the complete set of
- characters into two disjoint sets. Any given character
- matches one, and only one, of each pair.
-
- A "word" character is any letter or digit or the underscore
- character, that is, any character which can be part of a
- Perl "word". The definition of letters and digits is con-
- trolled by PCRE's character tables, and may vary if locale-
- specific matching is taking place (see "Locale support"
- above). For example, in the "fr" (French) locale, some char-
- acter codes greater than 128 are used for accented letters,
- and these are matched by \w.
-
- These character type sequences can appear both inside and
- outside character classes. They each match one character of
- the appropriate type. If the current matching point is at
- the end of the subject string, all of them fail, since there
- is no character to match.
-
- The fourth use of backslash is for certain simple asser-
- tions. An assertion specifies a condition that has to be met
- at a particular point in a match, without consuming any
- characters from the subject string. The use of subpatterns
- for more complicated assertions is described below. The
- backslashed assertions are
-
- \b word boundary
- \B not a word boundary
- \A start of subject (independent of multiline mode)
- \Z end of subject or newline at end (independent of
- multiline mode)
- \z end of subject (independent of multiline mode)
-
- These assertions may not appear in character classes (but
- note that "\b" has a different meaning, namely the backspace
- character, inside a character class).
-
- A word boundary is a position in the subject string where
- the current character and the previous character do not both
- match \w or \W (i.e. one matches \w and the other matches
- \W), or the start or end of the string if the first or last
- character matches \w, respectively.
-
- The \A, \Z, and \z assertions differ from the traditional
- circumflex and dollar (described below) in that they only
- ever match at the very start and end of the subject string,
- whatever options are set. They are not affected by the
- PCRE_NOTBOL or PCRE_NOTEOL options. If the startoffset argu-
- ment of pcre_exec() is non-zero, \A can never match. The
- difference between \Z and \z is that \Z matches before a
- newline that is the last character of the string as well as
- at the end of the string, whereas \z matches only at the
- end.
-
-
-
-CIRCUMFLEX AND DOLLAR
- Outside a character class, in the default matching mode, the
- circumflex character is an assertion which is true only if
- the current matching point is at the start of the subject
-
- string. If the startoffset argument of pcre_exec() is non-
- zero, circumflex can never match. Inside a character class,
- circumflex has an entirely different meaning (see below).
-
- Circumflex need not be the first character of the pattern if
- a number of alternatives are involved, but it should be the
- first thing in each alternative in which it appears if the
- pattern is ever to match that branch. If all possible alter-
- natives start with a circumflex, that is, if the pattern is
- constrained to match only at the start of the subject, it is
- said to be an "anchored" pattern. (There are also other con-
- structs that can cause a pattern to be anchored.)
-
- A dollar character is an assertion which is true only if the
- current matching point is at the end of the subject string,
- or immediately before a newline character that is the last
- character in the string (by default). Dollar need not be the
- last character of the pattern if a number of alternatives
- are involved, but it should be the last item in any branch
- in which it appears. Dollar has no special meaning in a
- character class.
-
- The meaning of dollar can be changed so that it matches only
- at the very end of the string, by setting the
- PCRE_DOLLAR_ENDONLY option at compile or matching time. This
- does not affect the \Z assertion.
-
- The meanings of the circumflex and dollar characters are
- changed if the PCRE_MULTILINE option is set. When this is
- the case, they match immediately after and immediately
- before an internal "\n" character, respectively, in addition
- to matching at the start and end of the subject string. For
- example, the pattern /^abc$/ matches the subject string
- "def\nabc" in multiline mode, but not otherwise. Conse-
- quently, patterns that are anchored in single line mode
- because all branches start with "^" are not anchored in mul-
- tiline mode, and a match for circumflex is possible when the
- startoffset argument of pcre_exec() is non-zero. The
- PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is
- set.
-
- Note that the sequences \A, \Z, and \z can be used to match
- the start and end of the subject in both modes, and if all
- branches of a pattern start with \A is it always anchored,
- whether PCRE_MULTILINE is set or not.
-
-
-
-FULL STOP (PERIOD, DOT)
- Outside a character class, a dot in the pattern matches any
- one character in the subject, including a non-printing char-
- acter, but not (by default) newline. If the PCRE_DOTALL
-
- option is set, dots match newlines as well. The handling of
- dot is entirely independent of the handling of circumflex
- and dollar, the only relationship being that they both
- involve newline characters. Dot has no special meaning in a
- character class.
-
-
-
-SQUARE BRACKETS
- An opening square bracket introduces a character class, ter-
- minated by a closing square bracket. A closing square
- bracket on its own is not special. If a closing square
- bracket is required as a member of the class, it should be
- the first data character in the class (after an initial cir-
- cumflex, if present) or escaped with a backslash.
-
- A character class matches a single character in the subject;
- the character must be in the set of characters defined by
- the class, unless the first character in the class is a cir-
- cumflex, in which case the subject character must not be in
- the set defined by the class. If a circumflex is actually
- required as a member of the class, ensure it is not the
- first character, or escape it with a backslash.
-
- For example, the character class [aeiou] matches any lower
- case vowel, while [^aeiou] matches any character that is not
- a lower case vowel. Note that a circumflex is just a con-
- venient notation for specifying the characters which are in
- the class by enumerating those that are not. It is not an
- assertion: it still consumes a character from the subject
- string, and fails if the current pointer is at the end of
- the string.
-
- When caseless matching is set, any letters in a class
- represent both their upper case and lower case versions, so
- for example, a caseless [aeiou] matches "A" as well as "a",
- and a caseless [^aeiou] does not match "A", whereas a case-
- ful version would.
-
- The newline character is never treated in any special way in
- character classes, whatever the setting of the PCRE_DOTALL
- or PCRE_MULTILINE options is. A class such as [^a] will
- always match a newline.
-
- The minus (hyphen) character can be used to specify a range
- of characters in a character class. For example, [d-m]
- matches any letter between d and m, inclusive. If a minus
- character is required in a class, it must be escaped with a
- backslash or appear in a position where it cannot be inter-
- preted as indicating a range, typically as the first or last
- character in the class.
-
- It is not possible to have the literal character "]" as the
- end character of a range. A pattern such as [W-]46] is
- interpreted as a class of two characters ("W" and "-") fol-
- lowed by a literal string "46]", so it would match "W46]" or
- "-46]". However, if the "]" is escaped with a backslash it
- is interpreted as the end of range, so [W-\]46] is inter-
- preted as a single class containing a range followed by two
- separate characters. The octal or hexadecimal representation
- of "]" can also be used to end a range.
-
- Ranges operate in ASCII collating sequence. They can also be
- used for characters specified numerically, for example
- [\000-\037]. If a range that includes letters is used when
- caseless matching is set, it matches the letters in either
- case. For example, [W-c] is equivalent to [][\^_`wxyzabc],
- matched caselessly, and if character tables for the "fr"
- locale are in use, [\xc8-\xcb] matches accented E characters
- in both cases.
-
- The character types \d, \D, \s, \S, \w, and \W may also
- appear in a character class, and add the characters that
- they match to the class. For example, [\dABCDEF] matches any
- hexadecimal digit. A circumflex can conveniently be used
- with the upper case character types to specify a more res-
- tricted set of characters than the matching lower case type.
- For example, the class [^\W_] matches any letter or digit,
- but not underscore.
-
- All non-alphameric characters other than \, -, ^ (at the
- start) and the terminating ] are non-special in character
- classes, but it does no harm if they are escaped.
-
-
-
-POSIX CHARACTER CLASSES
- Perl 5.6 (not yet released at the time of writing) is going
- to support the POSIX notation for character classes, which
- uses names enclosed by [: and :] within the enclosing
- square brackets. PCRE supports this notation. For example,
-
- [01[:alpha:]%]
-
- matches "0", "1", any alphabetic character, or "%". The sup-
- ported class names are
-
- alnum letters and digits
- alpha letters
- ascii character codes 0 - 127
- cntrl control characters
- digit decimal digits (same as \d)
- graph printing characters, excluding space
- lower lower case letters
- print printing characters, including space
- punct printing characters, excluding letters and digits
- space white space (same as \s)
- upper upper case letters
- word "word" characters (same as \w)
- xdigit hexadecimal digits
-
- The names "ascii" and "word" are Perl extensions. Another
- Perl extension is negation, which is indicated by a ^ char-
- acter after the colon. For example,
-
- [12[:^digit:]]
-
- matches "1", "2", or any non-digit. PCRE (and Perl) also
- recogize the POSIX syntax [.ch.] and [=ch=] where "ch" is a
- "collating element", but these are not supported, and an
- error is given if they are encountered.
-
-
-
-VERTICAL BAR
- Vertical bar characters are used to separate alternative
- patterns. For example, the pattern
-
- gilbert|sullivan
-
- matches either "gilbert" or "sullivan". Any number of alter-
- natives may appear, and an empty alternative is permitted
- (matching the empty string). The matching process tries
- each alternative in turn, from left to right, and the first
- one that succeeds is used. If the alternatives are within a
- subpattern (defined below), "succeeds" means matching the
- rest of the main pattern as well as the alternative in the
- subpattern.
-
-
-
-INTERNAL OPTION SETTING
- The settings of PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL,
- and PCRE_EXTENDED can be changed from within the pattern by
- a sequence of Perl option letters enclosed between "(?" and
- ")". The option letters are
-
- i for PCRE_CASELESS
- m for PCRE_MULTILINE
- s for PCRE_DOTALL
- x for PCRE_EXTENDED
-
- For example, (?im) sets caseless, multiline matching. It is
- also possible to unset these options by preceding the letter
- with a hyphen, and a combined setting and unsetting such as
- (?im-sx), which sets PCRE_CASELESS and PCRE_MULTILINE while
- unsetting PCRE_DOTALL and PCRE_EXTENDED, is also permitted.
- If a letter appears both before and after the hyphen, the
- option is unset.
-
- The scope of these option changes depends on where in the
- pattern the setting occurs. For settings that are outside
- any subpattern (defined below), the effect is the same as if
- the options were set or unset at the start of matching. The
- following patterns all behave in exactly the same way:
-
- (?i)abc
- a(?i)bc
- ab(?i)c
- abc(?i)
-
- which in turn is the same as compiling the pattern abc with
- PCRE_CASELESS set. In other words, such "top level" set-
- tings apply to the whole pattern (unless there are other
- changes inside subpatterns). If there is more than one set-
- ting of the same option at top level, the rightmost setting
- is used.
-
- If an option change occurs inside a subpattern, the effect
- is different. This is a change of behaviour in Perl 5.005.
- An option change inside a subpattern affects only that part
- of the subpattern that follows it, so
-
- (a(?i)b)c
-
- matches abc and aBc and no other strings (assuming
- PCRE_CASELESS is not used). By this means, options can be
- made to have different settings in different parts of the
- pattern. Any changes made in one alternative do carry on
- into subsequent branches within the same subpattern. For
- example,
-
- (a(?i)b|c)
-
- matches "ab", "aB", "c", and "C", even though when matching
- "C" the first branch is abandoned before the option setting.
- This is because the effects of option settings happen at
- compile time. There would be some very weird behaviour oth-
- erwise.
-
- The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can
- be changed in the same way as the Perl-compatible options by
- using the characters U and X respectively. The (?X) flag
- setting is special in that it must always occur earlier in
- the pattern than any of the additional features it turns on,
- even when it is at top level. It is best put at the start.
-
-
-
-SUBPATTERNS
- Subpatterns are delimited by parentheses (round brackets),
- which can be nested. Marking part of a pattern as a subpat-
- tern does two things:
-
- 1. It localizes a set of alternatives. For example, the pat-
- tern
-
- cat(aract|erpillar|)
-
- matches one of the words "cat", "cataract", or "caterpil-
- lar". Without the parentheses, it would match "cataract",
- "erpillar" or the empty string.
-
- 2. It sets up the subpattern as a capturing subpattern (as
- defined above). When the whole pattern matches, that por-
- tion of the subject string that matched the subpattern is
- passed back to the caller via the ovector argument of
- pcre_exec(). Opening parentheses are counted from left to
- right (starting from 1) to obtain the numbers of the captur-
- ing subpatterns.
-
- For example, if the string "the red king" is matched against
- the pattern
-
- the ((red|white) (king|queen))
-
- the captured substrings are "red king", "red", and "king",
- and are numbered 1, 2, and 3.
-
- The fact that plain parentheses fulfil two functions is not
- always helpful. There are often times when a grouping sub-
- pattern is required without a capturing requirement. If an
- opening parenthesis is followed by "?:", the subpattern does
- not do any capturing, and is not counted when computing the
- number of any subsequent capturing subpatterns. For example,
- if the string "the white queen" is matched against the pat-
- tern
-
- the ((?:red|white) (king|queen))
-
- the captured substrings are "white queen" and "queen", and
- are numbered 1 and 2. The maximum number of captured sub-
- strings is 99, and the maximum number of all subpatterns,
- both capturing and non-capturing, is 200.
-
- As a convenient shorthand, if any option settings are
- required at the start of a non-capturing subpattern, the
- option letters may appear between the "?" and the ":". Thus
- the two patterns
-
- (?i:saturday|sunday)
- (?:(?i)saturday|sunday)
-
- match exactly the same set of strings. Because alternative
- branches are tried from left to right, and options are not
- reset until the end of the subpattern is reached, an option
- setting in one branch does affect subsequent branches, so
- the above patterns match "SUNDAY" as well as "Saturday".
-
-
-
-REPETITION
- Repetition is specified by quantifiers, which can follow any
- of the following items:
-
- a single character, possibly escaped
- the . metacharacter
- a character class
- a back reference (see next section)
- a parenthesized subpattern (unless it is an assertion -
- see below)
-
- The general repetition quantifier specifies a minimum and
- maximum number of permitted matches, by giving the two
- numbers in curly brackets (braces), separated by a comma.
- The numbers must be less than 65536, and the first must be
- less than or equal to the second. For example:
-
- z{2,4}
-
- matches "zz", "zzz", or "zzzz". A closing brace on its own
- is not a special character. If the second number is omitted,
- but the comma is present, there is no upper limit; if the
- second number and the comma are both omitted, the quantifier
- specifies an exact number of required matches. Thus
-
- [aeiou]{3,}
-
- matches at least 3 successive vowels, but may match many
- more, while
-
- \d{8}
-
- matches exactly 8 digits. An opening curly bracket that
- appears in a position where a quantifier is not allowed, or
- one that does not match the syntax of a quantifier, is taken
- as a literal character. For example, {,6} is not a quantif-
- ier, but a literal string of four characters.
-
- The quantifier {0} is permitted, causing the expression to
- behave as if the previous item and the quantifier were not
- present.
-
- For convenience (and historical compatibility) the three
- most common quantifiers have single-character abbreviations:
-
- * is equivalent to {0,}
- + is equivalent to {1,}
- ? is equivalent to {0,1}
-
- It is possible to construct infinite loops by following a
- subpattern that can match no characters with a quantifier
- that has no upper limit, for example:
-
- (a?)*
-
- Earlier versions of Perl and PCRE used to give an error at
- compile time for such patterns. However, because there are
- cases where this can be useful, such patterns are now
- accepted, but if any repetition of the subpattern does in
- fact match no characters, the loop is forcibly broken.
-
- By default, the quantifiers are "greedy", that is, they
- match as much as possible (up to the maximum number of per-
- mitted times), without causing the rest of the pattern to
- fail. The classic example of where this gives problems is in
- trying to match comments in C programs. These appear between
- the sequences /* and */ and within the sequence, individual
- * and / characters may appear. An attempt to match C com-
- ments by applying the pattern
-
- /\*.*\*/
-
- to the string
-
- /* first command */ not comment /* second comment */
-
- fails, because it matches the entire string owing to the
- greediness of the .* item.
-
- However, if a quantifier is followed by a question mark, it
- ceases to be greedy, and instead matches the minimum number
- of times possible, so the pattern
-
- /\*.*?\*/
-
- does the right thing with the C comments. The meaning of the
- various quantifiers is not otherwise changed, just the pre-
- ferred number of matches. Do not confuse this use of ques-
- tion mark with its use as a quantifier in its own right.
- Because it has two uses, it can sometimes appear doubled, as
- in
-
- \d??\d
-
- which matches one digit by preference, but can match two if
- that is the only way the rest of the pattern matches.
-
- If the PCRE_UNGREEDY option is set (an option which is not
- available in Perl), the quantifiers are not greedy by
- default, but individual ones can be made greedy by following
- them with a question mark. In other words, it inverts the
- default behaviour.
-
- When a parenthesized subpattern is quantified with a minimum
- repeat count that is greater than 1 or with a limited max-
- imum, more store is required for the compiled pattern, in
- proportion to the size of the minimum or maximum.
-
- If a pattern starts with .* or .{0,} and the PCRE_DOTALL
- option (equivalent to Perl's /s) is set, thus allowing the .
- to match newlines, the pattern is implicitly anchored,
- because whatever follows will be tried against every charac-
- ter position in the subject string, so there is no point in
- retrying the overall match at any position after the first.
- PCRE treats such a pattern as though it were preceded by \A.
- In cases where it is known that the subject string contains
- no newlines, it is worth setting PCRE_DOTALL when the pat-
- tern begins with .* in order to obtain this optimization, or
- alternatively using ^ to indicate anchoring explicitly.
-
- When a capturing subpattern is repeated, the value captured
- is the substring that matched the final iteration. For exam-
- ple, after
-
- (tweedle[dume]{3}\s*)+
-
- has matched "tweedledum tweedledee" the value of the cap-
- tured substring is "tweedledee". However, if there are
- nested capturing subpatterns, the corresponding captured
- values may have been set in previous iterations. For exam-
- ple, after
-
- /(a|(b))+/
-
- matches "aba" the value of the second captured substring is
- "b".
-
-
-
-BACK REFERENCES
- Outside a character class, a backslash followed by a digit
- greater than 0 (and possibly further digits) is a back
- reference to a capturing subpattern earlier (i.e. to its
- left) in the pattern, provided there have been that many
- previous capturing left parentheses.
-
- However, if the decimal number following the backslash is
- less than 10, it is always taken as a back reference, and
- causes an error only if there are not that many capturing
- left parentheses in the entire pattern. In other words, the
- parentheses that are referenced need not be to the left of
- the reference for numbers less than 10. See the section
- entitled "Backslash" above for further details of the han-
- dling of digits following a backslash.
-
- A back reference matches whatever actually matched the cap-
- turing subpattern in the current subject string, rather than
- anything matching the subpattern itself. So the pattern
-
- (sens|respons)e and \1ibility
-
- matches "sense and sensibility" and "response and responsi-
- bility", but not "sense and responsibility". If caseful
- matching is in force at the time of the back reference, the
- case of letters is relevant. For example,
-
- ((?i)rah)\s+\1
-
- matches "rah rah" and "RAH RAH", but not "RAH rah", even
- though the original capturing subpattern is matched case-
- lessly.
-
- There may be more than one back reference to the same sub-
- pattern. If a subpattern has not actually been used in a
- particular match, any back references to it always fail. For
- example, the pattern
-
- (a|(bc))\2
-
- always fails if it starts to match "a" rather than "bc".
- Because there may be up to 99 back references, all digits
- following the backslash are taken as part of a potential
- back reference number. If the pattern continues with a digit
- character, some delimiter must be used to terminate the back
- reference. If the PCRE_EXTENDED option is set, this can be
- whitespace. Otherwise an empty comment can be used.
-
- A back reference that occurs inside the parentheses to which
- it refers fails when the subpattern is first used, so, for
- example, (a\1) never matches. However, such references can
- be useful inside repeated subpatterns. For example, the pat-
- tern
-
- (a|b\1)+
-
- matches any number of "a"s and also "aba", "ababbaa" etc. At
- each iteration of the subpattern, the back reference matches
- the character string corresponding to the previous
- iteration. In order for this to work, the pattern must be
- such that the first iteration does not need to match the
- back reference. This can be done using alternation, as in
- the example above, or by a quantifier with a minimum of
- zero.
-
-
-
-ASSERTIONS
- An assertion is a test on the characters following or
- preceding the current matching point that does not actually
- consume any characters. The simple assertions coded as \b,
- \B, \A, \Z, \z, ^ and $ are described above. More compli-
- cated assertions are coded as subpatterns. There are two
- kinds: those that look ahead of the current position in the
- subject string, and those that look behind it.
-
- An assertion subpattern is matched in the normal way, except
- that it does not cause the current matching position to be
- changed. Lookahead assertions start with (?= for positive
- assertions and (?! for negative assertions. For example,
-
- \w+(?=;)
-
- matches a word followed by a semicolon, but does not include
- the semicolon in the match, and
-
- foo(?!bar)
-
- matches any occurrence of "foo" that is not followed by
- "bar". Note that the apparently similar pattern
-
- (?!foo)bar
-
- does not find an occurrence of "bar" that is preceded by
- something other than "foo"; it finds any occurrence of "bar"
- whatsoever, because the assertion (?!foo) is always true
- when the next three characters are "bar". A lookbehind
- assertion is needed to achieve this effect.
-
- Lookbehind assertions start with (?<= for positive asser-
- tions and (? as in this example:
-
- (?>\d+)bar
-
- This kind of parenthesis "locks up" the part of the pattern
- it contains once it has matched, and a failure further into
- the pattern is prevented from backtracking into it.
- Backtracking past it to previous items, however, works as
- normal.
-
- An alternative description is that a subpattern of this type
- matches the string of characters that an identical stan-
- dalone pattern would match, if anchored at the current point
- in the subject string.
-
- Once-only subpatterns are not capturing subpatterns. Simple
- cases such as the above example can be thought of as a max-
- imizing repeat that must swallow everything it can. So,
- while both \d+ and \d+? are prepared to adjust the number of
- digits they match in order to make the rest of the pattern
- match, (?>\d+) can only match an entire sequence of digits.
-
- This construction can of course contain arbitrarily compli-
- cated subpatterns, and it can be nested.
-
- Once-only subpatterns can be used in conjunction with look-
- behind assertions to specify efficient matching at the end
- of the subject string. Consider a simple pattern such as
-
- abcd$
-
- when applied to a long string which does not match. Because
- matching proceeds from left to right, PCRE will look for
- each "a" in the subject and then see if what follows matches
- the rest of the pattern. If the pattern is specified as
-
- ^.*abcd$
-
- the initial .* matches the entire string at first, but when
- this fails (because there is no following "a"), it back-
- tracks to match all but the last character, then all but the
- last two characters, and so on. Once again the search for
- "a" covers the entire string, from right to left, so we are
- no better off. However, if the pattern is written as
-
- ^(?>.*)(?<=abcd)
-
- there can be no backtracking for the .* item; it can match
- only the entire string. The subsequent lookbehind assertion
- does a single test on the last four characters. If it fails,
- the match fails immediately. For long strings, this approach
- makes a significant difference to the processing time.
-
- When a pattern contains an unlimited repeat inside a subpat-
- tern that can itself be repeated an unlimited number of
- times, the use of a once-only subpattern is the only way to
- avoid some failing matches taking a very long time indeed.
- The pattern
-
- (\D+|<\d+>)*[!?]
-
- matches an unlimited number of substrings that either con-
- sist of non-digits, or digits enclosed in <>, followed by
- either ! or ?. When it matches, it runs quickly. However, if
- it is applied to
-
- aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
-
- it takes a long time before reporting failure. This is
- because the string can be divided between the two repeats in
- a large number of ways, and all have to be tried. (The exam-
- ple used [!?] rather than a single character at the end,
- because both PCRE and Perl have an optimization that allows
- for fast failure when a single character is used. They
- remember the last single character that is required for a
- match, and fail early if it is not present in the string.)
- If the pattern is changed to
-
- ((?>\D+)|<\d+>)*[!?]
-
- sequences of non-digits cannot be broken, and failure hap-
- pens quickly.
-
-
-
-CONDITIONAL SUBPATTERNS
- It is possible to cause the matching process to obey a sub-
- pattern conditionally or to choose between two alternative
- subpatterns, depending on the result of an assertion, or
- whether a previous capturing subpattern matched or not. The
- two possible forms of conditional subpattern are
-
- (?(condition)yes-pattern)
- (?(condition)yes-pattern|no-pattern)
-
- If the condition is satisfied, the yes-pattern is used; oth-
- erwise the no-pattern (if present) is used. If there are
- more than two alternatives in the subpattern, a compile-time
- error occurs.
-
- There are two kinds of condition. If the text between the
- parentheses consists of a sequence of digits, the condition
- is satisfied if the capturing subpattern of that number has
- previously matched. The number must be greater than zero.
- Consider the following pattern, which contains non-
- significant white space to make it more readable (assume the
- PCRE_EXTENDED option) and to divide it into three parts for
- ease of discussion:
-
- ( \( )? [^()]+ (?(1) \) )
-
- The first part matches an optional opening parenthesis, and
- if that character is present, sets it as the first captured
- substring. The second part matches one or more characters
- that are not parentheses. The third part is a conditional
- subpattern that tests whether the first set of parentheses
- matched or not. If they did, that is, if subject started
- with an opening parenthesis, the condition is true, and so
- the yes-pattern is executed and a closing parenthesis is
- required. Otherwise, since no-pattern is not present, the
- subpattern matches nothing. In other words, this pattern
- matches a sequence of non-parentheses, optionally enclosed
- in parentheses.
-
- If the condition is not a sequence of digits, it must be an
- assertion. This may be a positive or negative lookahead or
- lookbehind assertion. Consider this pattern, again contain-
- ing non-significant white space, and with the two alterna-
- tives on the second line:
-
- (?(?=[^a-z]*[a-z])
- \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2} )
-
- The condition is a positive lookahead assertion that matches
- an optional sequence of non-letters followed by a letter. In
- other words, it tests for the presence of at least one
- letter in the subject. If a letter is found, the subject is
- matched against the first alternative; otherwise it is
- matched against the second. This pattern matches strings in
- one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
- letters and dd are digits.
-
-
-
-COMMENTS
- The sequence (?# marks the start of a comment which contin-
- ues up to the next closing parenthesis. Nested parentheses
- are not permitted. The characters that make up a comment
- play no part in the pattern matching at all.
-
- If the PCRE_EXTENDED option is set, an unescaped # character
- outside a character class introduces a comment that contin-
- ues up to the next newline character in the pattern.
-
-
-
-RECURSIVE PATTERNS
- Consider the problem of matching a string in parentheses,
- allowing for unlimited nested parentheses. Without the use
- of recursion, the best that can be done is to use a pattern
- that matches up to some fixed depth of nesting. It is not
- possible to handle an arbitrary nesting depth. Perl 5.6 has
- provided an experimental facility that allows regular
- expressions to recurse (amongst other things). It does this
- by interpolating Perl code in the expression at run time,
- and the code can refer to the expression itself. A Perl pat-
- tern to solve the parentheses problem can be created like
- this:
-
- $re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;
-
- The (?p{...}) item interpolates Perl code at run time, and
- in this case refers recursively to the pattern in which it
- appears. Obviously, PCRE cannot support the interpolation of
- Perl code. Instead, the special item (?R) is provided for
- the specific case of recursion. This PCRE pattern solves the
- parentheses problem (assume the PCRE_EXTENDED option is set
- so that white space is ignored):
-
- \( ( (?>[^()]+) | (?R) )* \)
-
- First it matches an opening parenthesis. Then it matches any
- number of substrings which can either be a sequence of non-
- parentheses, or a recursive match of the pattern itself
- (i.e. a correctly parenthesized substring). Finally there is
- a closing parenthesis.
-
- This particular example pattern contains nested unlimited
- repeats, and so the use of a once-only subpattern for match-
- ing strings of non-parentheses is important when applying
- the pattern to strings that do not match. For example, when
- it is applied to
-
- (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
-
- it yields "no match" quickly. However, if a once-only sub-
- pattern is not used, the match runs for a very long time
- indeed because there are so many different ways the + and *
- repeats can carve up the subject, and all have to be tested
- before failure can be reported.
-
- The values set for any capturing subpatterns are those from
- the outermost level of the recursion at which the subpattern
- value is set. If the pattern above is matched against
-
- (ab(cd)ef)
-
- the value for the capturing parentheses is "ef", which is
- the last value taken on at the top level. If additional
- parentheses are added, giving
-
- \( ( ( (?>[^()]+) | (?R) )* ) \)
- ^ ^
- ^ ^ the string they capture is
- "ab(cd)ef", the contents of the top level parentheses. If
- there are more than 15 capturing parentheses in a pattern,
- PCRE has to obtain extra memory to store data during a
- recursion, which it does by using pcre_malloc, freeing it
- via pcre_free afterwards. If no memory can be obtained, it
- saves data for the first 15 capturing parentheses only, as
- there is no way to give an out-of-memory error from within a
- recursion.
-
-
-
-PERFORMANCE
- Certain items that may appear in patterns are more efficient
- than others. It is more efficient to use a character class
- like [aeiou] than a set of alternatives such as (a|e|i|o|u).
- In general, the simplest construction that provides the
- required behaviour is usually the most efficient. Jeffrey
- Friedl's book contains a lot of discussion about optimizing
- regular expressions for efficient performance.
-
- When a pattern begins with .* and the PCRE_DOTALL option is
- set, the pattern is implicitly anchored by PCRE, since it
- can match only at the start of a subject string. However, if
- PCRE_DOTALL is not set, PCRE cannot make this optimization,
- because the . metacharacter does not then match a newline,
- and if the subject string contains newlines, the pattern may
- match from the character immediately following one of them
- instead of from the very start. For example, the pattern
-
- (.*) second
-
- matches the subject "first\nand second" (where \n stands for
- a newline character) with the first captured substring being
- "and". In order to do this, PCRE has to retry the match
- starting after every newline in the subject.
-
- If you are using such a pattern with subject strings that do
- not contain newlines, the best performance is obtained by
- setting PCRE_DOTALL, or starting the pattern with ^.* to
- indicate explicit anchoring. That saves PCRE from having to
- scan along the subject looking for a newline to restart at.
-
- Beware of patterns that contain nested indefinite repeats.
- These can take a long time to run when applied to a string
- that does not match. Consider the pattern fragment
-
- (a+)*
-
- This can match "aaaa" in 33 different ways, and this number
- increases very rapidly as the string gets longer. (The *
- repeat can match 0, 1, 2, 3, or 4 times, and for each of
- those cases other than 0, the + repeats can match different
- numbers of times.) When the remainder of the pattern is such
- that the entire match is going to fail, PCRE has in princi-
- ple to try every possible variation, and this can take an
- extremely long time.
-
- An optimization catches some of the more simple cases such
- as
-
- (a+)*b
-
- where a literal character follows. Before embarking on the
- standard matching procedure, PCRE checks that there is a "b"
- later in the subject string, and if there is not, it fails
- the match immediately. However, when there is no following
- literal this optimization cannot be used. You can see the
- difference by comparing the behaviour of
-
- (a+)*\d
-
- with the pattern above. The former gives a failure almost
- instantly when applied to a whole line of "a" characters,
- whereas the latter takes an appreciable time with strings
- longer than about 20 characters.
-
-
-
-UTF-8 SUPPORT
- Starting at release 3.3, PCRE has some support for character
- strings encoded in the UTF-8 format. This is incomplete, and
- is regarded as experimental. In order to use it, you must
- configure PCRE to include UTF-8 support in the code, and, in
- addition, you must call pcre_compile() with the PCRE_UTF8
- option flag. When you do this, both the pattern and any sub-
- ject strings that are matched against it are treated as
- UTF-8 strings instead of just strings of bytes, but only in
- the cases that are mentioned below.
-
- If you compile PCRE with UTF-8 support, but do not use it at
- run time, the library will be a bit bigger, but the addi-
- tional run time overhead is limited to testing the PCRE_UTF8
- flag in several places, so should not be very large.
-
- PCRE assumes that the strings it is given contain valid
- UTF-8 codes. It does not diagnose invalid UTF-8 strings. If
- you pass invalid UTF-8 strings to PCRE, the results are
- undefined.
-
- Running with PCRE_UTF8 set causes these changes in the way
- PCRE works:
-
- 1. In a pattern, the escape sequence \x{...}, where the con-
- tents of the braces is a string of hexadecimal digits, is
- interpreted as a UTF-8 character whose code number is the
- given hexadecimal number, for example: \x{1234}. This
- inserts from one to six literal bytes into the pattern,
- using the UTF-8 encoding. If a non-hexadecimal digit appears
- between the braces, the item is not recognized.
-
- 2. The original hexadecimal escape sequence, \xhh, generates
- a two-byte UTF-8 character if its value is greater than 127.
-
- 3. Repeat quantifiers are NOT correctly handled if they fol-
- low a multibyte character. For example, \x{100}* and \xc3+
- do not work. If you want to repeat such characters, you must
- enclose them in non-capturing parentheses, for example
- (?:\x{100}), at present.
-
- 4. The dot metacharacter matches one UTF-8 character instead
- of a single byte.
-
- 5. Unlike literal UTF-8 characters, the dot metacharacter
- followed by a repeat quantifier does operate correctly on
- UTF-8 characters instead of single bytes.
-
- 4. Although the \x{...} escape is permitted in a character
- class, characters whose values are greater than 255 cannot
- be included in a class.
-
- 5. A class is matched against a UTF-8 character instead of
- just a single byte, but it can match only characters whose
- values are less than 256. Characters with greater values
- always fail to match a class.
-
- 6. Repeated classes work correctly on multiple characters.
-
- 7. Classes containing just a single character whose value is
- greater than 127 (but less than 256), for example, [\x80] or
- [^\x{93}], do not work because these are optimized into sin-
- gle byte matches. In the first case, of course, the class
- brackets are just redundant.
-
- 8. Lookbehind assertions move backwards in the subject by a
- fixed number of characters instead of a fixed number of
- bytes. Simple cases have been tested to work correctly, but
- there may be hidden gotchas herein.
-
- 9. The character types such as \d and \w do not work
- correctly with UTF-8 characters. They continue to test a
- single byte.
-
- 10. Anything not explicitly mentioned here continues to work
- in bytes rather than in characters.
-
- The following UTF-8 features of Perl 5.6 are not imple-
- mented:
- 1. The escape sequence \C to match a single byte.
-
- 2. The use of Unicode tables and properties and escapes \p,
- \P, and \X.
-
-
-
-AUTHOR
- Philip Hazel
- University Computing Service,
- New Museums Site,
- Cambridge CB2 3QG, England.
- Phone: +44 1223 334714
-
- Last updated: 28 August 2000,
- the 250th anniversary of the death of J.S. Bach.
- Copyright (c) 1997-2000 University of Cambridge.
diff --git a/pcre/doc/pcregrep.1 b/pcre/doc/pcregrep.1
deleted file mode 100644
index ec733fa1..00000000
--- a/pcre/doc/pcregrep.1
+++ /dev/null
@@ -1,76 +0,0 @@
-.TH PCREGREP 1
-.SH NAME
-pcregrep - a grep with Perl-compatible regular expressions.
-.SH SYNOPSIS
-.B pcregrep [-Vchilnsvx] pattern [file] ...
-
-
-.SH DESCRIPTION
-\fBpcregrep\fR searches files for character patterns, in the same way as other
-grep commands do, but it uses the PCRE regular expression library to support
-patterns that are compatible with the regular expressions of Perl 5. See
-\fBpcre(3)\fR for a full description of syntax and semantics.
-
-If no files are specified, \fBpcregrep\fR reads the standard input. By default,
-each line that matches the pattern is copied to the standard output, and if
-there is more than one file, the file name is printed before each line of
-output. However, there are options that can change how \fBpcregrep\fR behaves.
-
-Lines are limited to BUFSIZ characters. BUFSIZ is defined in \fB\fR.
-The newline character is removed from the end of each line before it is matched
-against the pattern.
-
-
-.SH OPTIONS
-.TP 10
-\fB-V\fR
-Write the version number of the PCRE library being used to the standard error
-stream.
-.TP
-\fB-c\fR
-Do not print individual lines; instead just print a count of the number of
-lines that would otherwise have been printed. If several files are given, a
-count is printed for each of them.
-.TP
-\fB-h\fR
-Suppress printing of filenames when searching multiple files.
-.TP
-\fB-i\fR
-Ignore upper/lower case distinctions during comparisons.
-.TP
-\fB-l\fR
-Instead of printing lines from the files, just print the names of the files
-containing lines that would have been printed. Each file name is printed
-once, on a separate line.
-.TP
-\fB-n\fR
-Precede each line by its line number in the file.
-.TP
-\fB-s\fR
-Work silently, that is, display nothing except error messages.
-The exit status indicates whether any matches were found.
-.TP
-\fB-v\fR
-Invert the sense of the match, so that lines which do \fInot\fR match the
-pattern are now the ones that are found.
-.TP
-\fB-x\fR
-Force the pattern to be anchored (it must start matching at the beginning of
-the line) and in addition, require it to match the entire line. This is
-equivalent to having ^ and $ characters at the start and end of each
-alternative branch in the regular expression.
-
-
-.SH SEE ALSO
-\fBpcre(3)\fR, Perl 5 documentation
-
-
-.SH DIAGNOSTICS
-Exit status is 0 if any matches were found, 1 if no matches were found, and 2
-for syntax errors or inacessible files (even if matches were found).
-
-
-.SH AUTHOR
-Philip Hazel
-.br
-Copyright (c) 1997-2000 University of Cambridge.
diff --git a/pcre/doc/pcregrep.html b/pcre/doc/pcregrep.html
deleted file mode 100644
index 19f733c4..00000000
--- a/pcre/doc/pcregrep.html
+++ /dev/null
@@ -1,105 +0,0 @@
-
-
-pcregrep specification
-
-
-
pcregrep specification
-This HTML document has been generated automatically from the original man page.
-If there is any nonsense in it, please consult the man page in case the
-conversion went wrong.
-
-pcregrep searches files for character patterns, in the same way as other
-grep commands do, but it uses the PCRE regular expression library to support
-patterns that are compatible with the regular expressions of Perl 5. See
-pcre(3) for a full description of syntax and semantics.
-
-
-If no files are specified, pcregrep reads the standard input. By default,
-each line that matches the pattern is copied to the standard output, and if
-there is more than one file, the file name is printed before each line of
-output. However, there are options that can change how pcregrep behaves.
-
-
-Lines are limited to BUFSIZ characters. BUFSIZ is defined in <stdio.h>.
-The newline character is removed from the end of each line before it is matched
-against the pattern.
-
--V
-Write the version number of the PCRE library being used to the standard error
-stream.
-
-
--c
-Do not print individual lines; instead just print a count of the number of
-lines that would otherwise have been printed. If several files are given, a
-count is printed for each of them.
-
-
--h
-Suppress printing of filenames when searching multiple files.
-
-
--i
-Ignore upper/lower case distinctions during comparisons.
-
-
--l
-Instead of printing lines from the files, just print the names of the files
-containing lines that would have been printed. Each file name is printed
-once, on a separate line.
-
-
--n
-Precede each line by its line number in the file.
-
-
--s
-Work silently, that is, display nothing except error messages.
-The exit status indicates whether any matches were found.
-
-
--v
-Invert the sense of the match, so that lines which do not match the
-pattern are now the ones that are found.
-
-
--x
-Force the pattern to be anchored (it must start matching at the beginning of
-the line) and in addition, require it to match the entire line. This is
-equivalent to having ^ and $ characters at the start and end of each
-alternative branch in the regular expression.
-
-Philip Hazel <ph10@cam.ac.uk>
-
-Copyright (c) 1997-2000 University of Cambridge.
diff --git a/pcre/doc/pcregrep.txt b/pcre/doc/pcregrep.txt
deleted file mode 100644
index 871350ca..00000000
--- a/pcre/doc/pcregrep.txt
+++ /dev/null
@@ -1,87 +0,0 @@
-NAME
- pcregrep - a grep with Perl-compatible regular expressions.
-
-
-
-SYNOPSIS
- pcregrep [-Vchilnsvx] pattern [file] ...
-
-
-
-DESCRIPTION
- pcregrep searches files for character patterns, in the same
- way as other grep commands do, but it uses the PCRE regular
- expression library to support patterns that are compatible
- with the regular expressions of Perl 5. See pcre(3) for a
- full description of syntax and semantics.
-
- If no files are specified, pcregrep reads the standard
- input. By default, each line that matches the pattern is
- copied to the standard output, and if there is more than one
- file, the file name is printed before each line of output.
- However, there are options that can change how pcregrep
- behaves.
-
- Lines are limited to BUFSIZ characters. BUFSIZ is defined in
- . The newline character is removed from the end of
- each line before it is matched against the pattern.
-
-
-
-OPTIONS
- -V Write the version number of the PCRE library being
- used to the standard error stream.
-
- -c Do not print individual lines; instead just print
- a count of the number of lines that would other-
- wise have been printed. If several files are
- given, a count is printed for each of them.
-
- -h Suppress printing of filenames when searching mul-
- tiple files.
-
- -i Ignore upper/lower case distinctions during com-
- parisons.
-
- -l Instead of printing lines from the files, just
- print the names of the files containing lines that
- would have been printed. Each file name is printed
- once, on a separate line.
-
- -n Precede each line by its line number in the file.
-
- -s Work silently, that is, display nothing except
- error messages. The exit status indicates whether
- any matches were found.
-
- -v Invert the sense of the match, so that lines which
- do not match the pattern are now the ones that are
- found.
-
- -x Force the pattern to be anchored (it must start
- matching at the beginning of the line) and in
- addition, require it to match the entire line.
- This is equivalent to having ^ and $ characters at
- the start and end of each alternative branch in
- the regular expression.
-
-
-
-SEE ALSO
- pcre(3), Perl 5 documentation
-
-
-
-
-
-DIAGNOSTICS
- Exit status is 0 if any matches were found, 1 if no matches
- were found, and 2 for syntax errors or inacessible files
- (even if matches were found).
-
-
-
-AUTHOR
- Philip Hazel
- Copyright (c) 1997-2000 University of Cambridge.
-
diff --git a/pcre/doc/pcreposix.3 b/pcre/doc/pcreposix.3
deleted file mode 100644
index 4853a97f..00000000
--- a/pcre/doc/pcreposix.3
+++ /dev/null
@@ -1,149 +0,0 @@
-.TH PCRE 3
-.SH NAME
-pcreposix - POSIX API for Perl-compatible regular expressions.
-.SH SYNOPSIS
-.B #include
-.PP
-.SM
-.br
-.B int regcomp(regex_t *\fIpreg\fR, const char *\fIpattern\fR,
-.ti +5n
-.B int \fIcflags\fR);
-.PP
-.br
-.B int regexec(regex_t *\fIpreg\fR, const char *\fIstring\fR,
-.ti +5n
-.B size_t \fInmatch\fR, regmatch_t \fIpmatch\fR[], int \fIeflags\fR);
-.PP
-.br
-.B size_t regerror(int \fIerrcode\fR, const regex_t *\fIpreg\fR,
-.ti +5n
-.B char *\fIerrbuf\fR, size_t \fIerrbuf_size\fR);
-.PP
-.br
-.B void regfree(regex_t *\fIpreg\fR);
-
-
-.SH DESCRIPTION
-This set of functions provides a POSIX-style API to the PCRE regular expression
-package. See the \fBpcre\fR documentation for a description of the native API,
-which contains additional functionality.
-
-The functions described here are just wrapper functions that ultimately call
-the native API. Their prototypes are defined in the \fBpcreposix.h\fR header
-file, and on Unix systems the library itself is called \fBpcreposix.a\fR, so
-can be accessed by adding \fB-lpcreposix\fR to the command for linking an
-application which uses them. Because the POSIX functions call the native ones,
-it is also necessary to add \fR-lpcre\fR.
-
-I have implemented only those option bits that can be reasonably mapped to PCRE
-native options. In addition, the options REG_EXTENDED and REG_NOSUB are defined
-with the value zero. They have no effect, but since programs that are written
-to the POSIX interface often use them, this makes it easier to slot in PCRE as
-a replacement library. Other POSIX options are not even defined.
-
-When PCRE is called via these functions, it is only the API that is POSIX-like
-in style. The syntax and semantics of the regular expressions themselves are
-still those of Perl, subject to the setting of various PCRE options, as
-described below.
-
-The header for these functions is supplied as \fBpcreposix.h\fR to avoid any
-potential clash with other POSIX libraries. It can, of course, be renamed or
-aliased as \fBregex.h\fR, which is the "correct" name. It provides two
-structure types, \fIregex_t\fR for compiled internal forms, and
-\fIregmatch_t\fR for returning captured substrings. It also defines some
-constants whose names start with "REG_"; these are used for setting options and
-identifying error codes.
-
-
-.SH COMPILING A PATTERN
-
-The function \fBregcomp()\fR is called to compile a pattern into an
-internal form. The pattern is a C string terminated by a binary zero, and
-is passed in the argument \fIpattern\fR. The \fIpreg\fR argument is a pointer
-to a regex_t structure which is used as a base for storing information about
-the compiled expression.
-
-The argument \fIcflags\fR is either zero, or contains one or more of the bits
-defined by the following macros:
-
- REG_ICASE
-
-The PCRE_CASELESS option is set when the expression is passed for compilation
-to the native function.
-
- REG_NEWLINE
-
-The PCRE_MULTILINE option is set when the expression is passed for compilation
-to the native function.
-
-In the absence of these flags, no options are passed to the native function.
-This means the the regex is compiled with PCRE default semantics. In
-particular, the way it handles newline characters in the subject string is the
-Perl way, not the POSIX way. Note that setting PCRE_MULTILINE has only
-\fIsome\fR of the effects specified for REG_NEWLINE. It does not affect the way
-newlines are matched by . (they aren't) or a negative class such as [^a] (they
-are).
-
-The yield of \fBregcomp()\fR is zero on success, and non-zero otherwise. The
-\fIpreg\fR structure is filled in on success, and one member of the structure
-is publicized: \fIre_nsub\fR contains the number of capturing subpatterns in
-the regular expression. Various error codes are defined in the header file.
-
-
-.SH MATCHING A PATTERN
-The function \fBregexec()\fR is called to match a pre-compiled pattern
-\fIpreg\fR against a given \fIstring\fR, which is terminated by a zero byte,
-subject to the options in \fIeflags\fR. These can be:
-
- REG_NOTBOL
-
-The PCRE_NOTBOL option is set when calling the underlying PCRE matching
-function.
-
- REG_NOTEOL
-
-The PCRE_NOTEOL option is set when calling the underlying PCRE matching
-function.
-
-The portion of the string that was matched, and also any captured substrings,
-are returned via the \fIpmatch\fR argument, which points to an array of
-\fInmatch\fR structures of type \fIregmatch_t\fR, containing the members
-\fIrm_so\fR and \fIrm_eo\fR. These contain the offset to the first character of
-each substring and the offset to the first character after the end of each
-substring, respectively. The 0th element of the vector relates to the entire
-portion of \fIstring\fR that was matched; subsequent elements relate to the
-capturing subpatterns of the regular expression. Unused entries in the array
-have both structure members set to -1.
-
-A successful match yields a zero return; various error codes are defined in the
-header file, of which REG_NOMATCH is the "expected" failure code.
-
-
-.SH ERROR MESSAGES
-The \fBregerror()\fR function maps a non-zero errorcode from either
-\fBregcomp\fR or \fBregexec\fR to a printable message. If \fIpreg\fR is not
-NULL, the error should have arisen from the use of that structure. A message
-terminated by a binary zero is placed in \fIerrbuf\fR. The length of the
-message, including the zero, is limited to \fIerrbuf_size\fR. The yield of the
-function is the size of buffer needed to hold the whole message.
-
-
-.SH STORAGE
-Compiling a regular expression causes memory to be allocated and associated
-with the \fIpreg\fR structure. The function \fBregfree()\fR frees all such
-memory, after which \fIpreg\fR may no longer be used as a compiled expression.
-
-
-.SH AUTHOR
-Philip Hazel
-.br
-University Computing Service,
-.br
-New Museums Site,
-.br
-Cambridge CB2 3QG, England.
-.br
-Phone: +44 1223 334714
-
-Copyright (c) 1997-2000 University of Cambridge.
diff --git a/pcre/doc/pcreposix.html b/pcre/doc/pcreposix.html
deleted file mode 100644
index 79ff544b..00000000
--- a/pcre/doc/pcreposix.html
+++ /dev/null
@@ -1,191 +0,0 @@
-
-
-pcreposix specification
-
-
-
pcreposix specification
-This HTML document has been generated automatically from the original man page.
-If there is any nonsense in it, please consult the man page in case the
-conversion went wrong.
-
-This set of functions provides a POSIX-style API to the PCRE regular expression
-package. See the pcre documentation for a description of the native API,
-which contains additional functionality.
-
-
-The functions described here are just wrapper functions that ultimately call
-the native API. Their prototypes are defined in the pcreposix.h header
-file, and on Unix systems the library itself is called pcreposix.a, so
-can be accessed by adding -lpcreposix to the command for linking an
-application which uses them. Because the POSIX functions call the native ones,
-it is also necessary to add \fR-lpcre\fR.
-
-
-I have implemented only those option bits that can be reasonably mapped to PCRE
-native options. In addition, the options REG_EXTENDED and REG_NOSUB are defined
-with the value zero. They have no effect, but since programs that are written
-to the POSIX interface often use them, this makes it easier to slot in PCRE as
-a replacement library. Other POSIX options are not even defined.
-
-
-When PCRE is called via these functions, it is only the API that is POSIX-like
-in style. The syntax and semantics of the regular expressions themselves are
-still those of Perl, subject to the setting of various PCRE options, as
-described below.
-
-
-The header for these functions is supplied as pcreposix.h to avoid any
-potential clash with other POSIX libraries. It can, of course, be renamed or
-aliased as regex.h, which is the "correct" name. It provides two
-structure types, regex_t for compiled internal forms, and
-regmatch_t for returning captured substrings. It also defines some
-constants whose names start with "REG_"; these are used for setting options and
-identifying error codes.
-
-The function regcomp() is called to compile a pattern into an
-internal form. The pattern is a C string terminated by a binary zero, and
-is passed in the argument pattern. The preg argument is a pointer
-to a regex_t structure which is used as a base for storing information about
-the compiled expression.
-
-
-The argument cflags is either zero, or contains one or more of the bits
-defined by the following macros:
-
-
-
- REG_ICASE
-
-
-
-The PCRE_CASELESS option is set when the expression is passed for compilation
-to the native function.
-
-
-
- REG_NEWLINE
-
-
-
-The PCRE_MULTILINE option is set when the expression is passed for compilation
-to the native function.
-
-
-In the absence of these flags, no options are passed to the native function.
-This means the the regex is compiled with PCRE default semantics. In
-particular, the way it handles newline characters in the subject string is the
-Perl way, not the POSIX way. Note that setting PCRE_MULTILINE has only
-some of the effects specified for REG_NEWLINE. It does not affect the way
-newlines are matched by . (they aren't) or a negative class such as [^a] (they
-are).
-
-
-The yield of regcomp() is zero on success, and non-zero otherwise. The
-preg structure is filled in on success, and one member of the structure
-is publicized: re_nsub contains the number of capturing subpatterns in
-the regular expression. Various error codes are defined in the header file.
-
-The function regexec() is called to match a pre-compiled pattern
-preg against a given string, which is terminated by a zero byte,
-subject to the options in eflags. These can be:
-
-
-
- REG_NOTBOL
-
-
-
-The PCRE_NOTBOL option is set when calling the underlying PCRE matching
-function.
-
-
-
- REG_NOTEOL
-
-
-
-The PCRE_NOTEOL option is set when calling the underlying PCRE matching
-function.
-
-
-The portion of the string that was matched, and also any captured substrings,
-are returned via the pmatch argument, which points to an array of
-nmatch structures of type regmatch_t, containing the members
-rm_so and rm_eo. These contain the offset to the first character of
-each substring and the offset to the first character after the end of each
-substring, respectively. The 0th element of the vector relates to the entire
-portion of string that was matched; subsequent elements relate to the
-capturing subpatterns of the regular expression. Unused entries in the array
-have both structure members set to -1.
-
-
-A successful match yields a zero return; various error codes are defined in the
-header file, of which REG_NOMATCH is the "expected" failure code.
-
-The regerror() function maps a non-zero errorcode from either
-regcomp or regexec to a printable message. If preg is not
-NULL, the error should have arisen from the use of that structure. A message
-terminated by a binary zero is placed in errbuf. The length of the
-message, including the zero, is limited to errbuf_size. The yield of the
-function is the size of buffer needed to hold the whole message.
-
-Compiling a regular expression causes memory to be allocated and associated
-with the preg structure. The function regfree() frees all such
-memory, after which preg may no longer be used as a compiled expression.
-
-Copyright (c) 1997-2000 University of Cambridge.
diff --git a/pcre/doc/pcreposix.txt b/pcre/doc/pcreposix.txt
deleted file mode 100644
index 2d76f7cd..00000000
--- a/pcre/doc/pcreposix.txt
+++ /dev/null
@@ -1,159 +0,0 @@
-NAME
- pcreposix - POSIX API for Perl-compatible regular expres-
- sions.
-
-
-
-SYNOPSIS
- #include
-
- int regcomp(regex_t *preg, const char *pattern,
- int cflags);
-
- int regexec(regex_t *preg, const char *string,
- size_t nmatch, regmatch_t pmatch[], int eflags);
-
- size_t regerror(int errcode, const regex_t *preg,
- char *errbuf, size_t errbuf_size);
-
- void regfree(regex_t *preg);
-
-
-
-DESCRIPTION
- This set of functions provides a POSIX-style API to the PCRE
- regular expression package. See the pcre documentation for a
- description of the native API, which contains additional
- functionality.
-
- The functions described here are just wrapper functions that
- ultimately call the native API. Their prototypes are defined
- in the pcreposix.h header file, and on Unix systems the
- library itself is called pcreposix.a, so can be accessed by
- adding -lpcreposix to the command for linking an application
- which uses them. Because the POSIX functions call the native
- ones, it is also necessary to add -lpcre.
-
- I have implemented only those option bits that can be rea-
- sonably mapped to PCRE native options. In addition, the
- options REG_EXTENDED and REG_NOSUB are defined with the
- value zero. They have no effect, but since programs that are
- written to the POSIX interface often use them, this makes it
- easier to slot in PCRE as a replacement library. Other POSIX
- options are not even defined.
-
- When PCRE is called via these functions, it is only the API
- that is POSIX-like in style. The syntax and semantics of the
- regular expressions themselves are still those of Perl, sub-
- ject to the setting of various PCRE options, as described
- below.
-
- The header for these functions is supplied as pcreposix.h to
- avoid any potential clash with other POSIX libraries. It
- can, of course, be renamed or aliased as regex.h, which is
- the "correct" name. It provides two structure types, regex_t
- for compiled internal forms, and regmatch_t for returning
- captured substrings. It also defines some constants whose
- names start with "REG_"; these are used for setting options
- and identifying error codes.
-
-
-
-COMPILING A PATTERN
- The function regcomp() is called to compile a pattern into
- an internal form. The pattern is a C string terminated by a
- binary zero, and is passed in the argument pattern. The preg
- argument is a pointer to a regex_t structure which is used
- as a base for storing information about the compiled expres-
- sion.
-
- The argument cflags is either zero, or contains one or more
- of the bits defined by the following macros:
-
- REG_ICASE
-
- The PCRE_CASELESS option is set when the expression is
- passed for compilation to the native function.
-
- REG_NEWLINE
-
- The PCRE_MULTILINE option is set when the expression is
- passed for compilation to the native function.
-
- In the absence of these flags, no options are passed to the
- native function. This means the the regex is compiled with
- PCRE default semantics. In particular, the way it handles
- newline characters in the subject string is the Perl way,
- not the POSIX way. Note that setting PCRE_MULTILINE has only
- some of the effects specified for REG_NEWLINE. It does not
- affect the way newlines are matched by . (they aren't) or a
- negative class such as [^a] (they are).
-
- The yield of regcomp() is zero on success, and non-zero oth-
- erwise. The preg structure is filled in on success, and one
- member of the structure is publicized: re_nsub contains the
- number of capturing subpatterns in the regular expression.
- Various error codes are defined in the header file.
-
-
-
-MATCHING A PATTERN
- The function regexec() is called to match a pre-compiled
- pattern preg against a given string, which is terminated by
- a zero byte, subject to the options in eflags. These can be:
-
- REG_NOTBOL
-
- The PCRE_NOTBOL option is set when calling the underlying
- PCRE matching function.
-
- REG_NOTEOL
-
- The PCRE_NOTEOL option is set when calling the underlying
- PCRE matching function.
-
- The portion of the string that was matched, and also any
- captured substrings, are returned via the pmatch argument,
- which points to an array of nmatch structures of type
- regmatch_t, containing the members rm_so and rm_eo. These
- contain the offset to the first character of each substring
- and the offset to the first character after the end of each
- substring, respectively. The 0th element of the vector
- relates to the entire portion of string that was matched;
- subsequent elements relate to the capturing subpatterns of
- the regular expression. Unused entries in the array have
- both structure members set to -1.
-
- A successful match yields a zero return; various error codes
- are defined in the header file, of which REG_NOMATCH is the
- "expected" failure code.
-
-
-
-ERROR MESSAGES
- The regerror() function maps a non-zero errorcode from
- either regcomp or regexec to a printable message. If preg is
- not NULL, the error should have arisen from the use of that
- structure. A message terminated by a binary zero is placed
- in errbuf. The length of the message, including the zero, is
- limited to errbuf_size. The yield of the function is the
- size of buffer needed to hold the whole message.
-
-
-
-STORAGE
- Compiling a regular expression causes memory to be allocated
- and associated with the preg structure. The function reg-
- free() frees all such memory, after which preg may no longer
- be used as a compiled expression.
-
-
-
-AUTHOR
- Philip Hazel
- University Computing Service,
- New Museums Site,
- Cambridge CB2 3QG, England.
- Phone: +44 1223 334714
-
- Copyright (c) 1997-2000 University of Cambridge.
diff --git a/pcre/doc/pcretest.txt b/pcre/doc/pcretest.txt
deleted file mode 100644
index 722e6b86..00000000
--- a/pcre/doc/pcretest.txt
+++ /dev/null
@@ -1,246 +0,0 @@
-The pcretest program
---------------------
-
-This program is intended for testing PCRE, but it can also be used for
-experimenting with regular expressions.
-
-If it is given two filename arguments, it reads from the first and writes to
-the second. If it is given only one filename argument, it reads from that file
-and writes to stdout. Otherwise, it reads from stdin and writes to stdout, and
-prompts for each line of input, using "re>" to prompt for regular expressions,
-and "data>" to prompt for data lines.
-
-The program handles any number of sets of input on a single input file. Each
-set starts with a regular expression, and continues with any number of data
-lines to be matched against the pattern. An empty line signals the end of the
-data lines, at which point a new regular expression is read. The regular
-expressions are given enclosed in any non-alphameric delimiters other than
-backslash, for example
-
- /(a|bc)x+yz/
-
-White space before the initial delimiter is ignored. A regular expression may
-be continued over several input lines, in which case the newline characters are
-included within it. See the test input files in the testdata directory for many
-examples. It is possible to include the delimiter within the pattern by
-escaping it, for example
-
- /abc\/def/
-
-If you do so, the escape and the delimiter form part of the pattern, but since
-delimiters are always non-alphameric, this does not affect its interpretation.
-If the terminating delimiter is immediately followed by a backslash, for
-example,
-
- /abc/\
-
-then a backslash is added to the end of the pattern. This is done to provide a
-way of testing the error condition that arises if a pattern finishes with a
-backslash, because
-
- /abc\/
-
-is interpreted as the first line of a pattern that starts with "abc/", causing
-pcretest to read the next line as a continuation of the regular expression.
-
-
-PATTERN MODIFIERS
------------------
-
-The pattern may be followed by i, m, s, or x to set the PCRE_CASELESS,
-PCRE_MULTILINE, PCRE_DOTALL, or PCRE_EXTENDED options, respectively. For
-example:
-
- /caseless/i
-
-These modifier letters have the same effect as they do in Perl. There are
-others which set PCRE options that do not correspond to anything in Perl: /A,
-/E, and /X set PCRE_ANCHORED, PCRE_DOLLAR_ENDONLY, and PCRE_EXTRA respectively.
-
-Searching for all possible matches within each subject string can be requested
-by the /g or /G modifier. After finding a match, PCRE is called again to search
-the remainder of the subject string. The difference between /g and /G is that
-the former uses the startoffset argument to pcre_exec() to start searching at
-a new point within the entire string (which is in effect what Perl does),
-whereas the latter passes over a shortened substring. This makes a difference
-to the matching process if the pattern begins with a lookbehind assertion
-(including \b or \B).
-
-If any call to pcre_exec() in a /g or /G sequence matches an empty string, the
-next call is done with the PCRE_NOTEMPTY and PCRE_ANCHORED flags set in order
-to search for another, non-empty, match at the same point. If this second match
-fails, the start offset is advanced by one, and the normal match is retried.
-This imitates the way Perl handles such cases when using the /g modifier or the
-split() function.
-
-There are a number of other modifiers for controlling the way pcretest
-operates.
-
-The /+ modifier requests that as well as outputting the substring that matched
-the entire pattern, pcretest should in addition output the remainder of the
-subject string. This is useful for tests where the subject contains multiple
-copies of the same substring.
-
-The /L modifier must be followed directly by the name of a locale, for example,
-
- /pattern/Lfr
-
-For this reason, it must be the last modifier letter. The given locale is set,
-pcre_maketables() is called to build a set of character tables for the locale,
-and this is then passed to pcre_compile() when compiling the regular
-expression. Without an /L modifier, NULL is passed as the tables pointer; that
-is, /L applies only to the expression on which it appears.
-
-The /I modifier requests that pcretest output information about the compiled
-expression (whether it is anchored, has a fixed first character, and so on). It
-does this by calling pcre_fullinfo() after compiling an expression, and
-outputting the information it gets back. If the pattern is studied, the results
-of that are also output.
-
-The /D modifier is a PCRE debugging feature, which also assumes /I. It causes
-the internal form of compiled regular expressions to be output after
-compilation.
-
-The /S modifier causes pcre_study() to be called after the expression has been
-compiled, and the results used when the expression is matched.
-
-The /M modifier causes the size of memory block used to hold the compiled
-pattern to be output.
-
-The /P modifier causes pcretest to call PCRE via the POSIX wrapper API rather
-than its native API. When this is done, all other modifiers except /i, /m, and
-/+ are ignored. REG_ICASE is set if /i is present, and REG_NEWLINE is set if /m
-is present. The wrapper functions force PCRE_DOLLAR_ENDONLY always, and
-PCRE_DOTALL unless REG_NEWLINE is set.
-
-The /8 modifier causes pcretest to call PCRE with the PCRE_UTF8 option set.
-This turns on the (currently incomplete) support for UTF-8 character handling
-in PCRE, provided that it was compiled with this support enabled. This modifier
-also causes any non-printing characters in output strings to be printed using
-the \x{hh...} notation if they are valid UTF-8 sequences.
-
-
-DATA LINES
-----------
-
-Before each data line is passed to pcre_exec(), leading and trailing whitespace
-is removed, and it is then scanned for \ escapes. The following are recognized:
-
- \a alarm (= BEL)
- \b backspace
- \e escape
- \f formfeed
- \n newline
- \r carriage return
- \t tab
- \v vertical tab
- \nnn octal character (up to 3 octal digits)
- \xhh hexadecimal character (up to 2 hex digits)
- \x{hh...} hexadecimal UTF-8 character
-
- \A pass the PCRE_ANCHORED option to pcre_exec()
- \B pass the PCRE_NOTBOL option to pcre_exec()
- \Cdd call pcre_copy_substring() for substring dd after a successful
- match (any decimal number less than 32)
- \Gdd call pcre_get_substring() for substring dd after a successful
- match (any decimal number less than 32)
- \L call pcre_get_substringlist() after a successful match
- \N pass the PCRE_NOTEMPTY option to pcre_exec()
- \Odd set the size of the output vector passed to pcre_exec() to dd
- (any number of decimal digits)
- \Z pass the PCRE_NOTEOL option to pcre_exec()
-
-A backslash followed by anything else just escapes the anything else. If the
-very last character is a backslash, it is ignored. This gives a way of passing
-an empty line as data, since a real empty line terminates the data input.
-
-If /P was present on the regex, causing the POSIX wrapper API to be used, only
-\B, and \Z have any effect, causing REG_NOTBOL and REG_NOTEOL to be passed to
-regexec() respectively.
-
-The use of \x{hh...} to represent UTF-8 characters is not dependent on the use
-of the /8 modifier on the pattern. It is recognized always. There may be any
-number of hexadecimal digits inside the braces. The result is from one to six
-bytes, encoded according to the UTF-8 rules.
-
-
-OUTPUT FROM PCRETEST
---------------------
-
-When a match succeeds, pcretest outputs the list of captured substrings that
-pcre_exec() returns, starting with number 0 for the string that matched the
-whole pattern. Here is an example of an interactive pcretest run.
-
- $ pcretest
- PCRE version 2.06 08-Jun-1999
-
- re> /^abc(\d+)/
- data> abc123
- 0: abc123
- 1: 123
- data> xyz
- No match
-
-If the strings contain any non-printing characters, they are output as \0x
-escapes, or as \x{...} escapes if the /8 modifier was present on the pattern.
-If the pattern has the /+ modifier, then the output for substring 0 is followed
-by the the rest of the subject string, identified by "0+" like this:
-
- re> /cat/+
- data> cataract
- 0: cat
- 0+ aract
-
-If the pattern has the /g or /G modifier, the results of successive matching
-attempts are output in sequence, like this:
-
- re> /\Bi(\w\w)/g
- data> Mississippi
- 0: iss
- 1: ss
- 0: iss
- 1: ss
- 0: ipp
- 1: pp
-
-"No match" is output only if the first match attempt fails.
-
-If any of \C, \G, or \L are present in a data line that is successfully
-matched, the substrings extracted by the convenience functions are output with
-C, G, or L after the string number instead of a colon. This is in addition to
-the normal full list. The string length (that is, the return from the
-extraction function) is given in parentheses after each string for \C and \G.
-
-Note that while patterns can be continued over several lines (a plain ">"
-prompt is used for continuations), data lines may not. However newlines can be
-included in data by means of the \n escape.
-
-
-COMMAND LINE OPTIONS
---------------------
-
-If the -p option is given to pcretest, it is equivalent to adding /P to each
-regular expression: the POSIX wrapper API is used to call PCRE. None of the
-following flags has any effect in this case.
-
-If the option -d is given to pcretest, it is equivalent to adding /D to each
-regular expression: the internal form is output after compilation.
-
-If the option -i is given to pcretest, it is equivalent to adding /I to each
-regular expression: information about the compiled pattern is given after
-compilation.
-
-If the option -m is given to pcretest, it outputs the size of each compiled
-pattern after it has been compiled. It is equivalent to adding /M to each
-regular expression. For compatibility with earlier versions of pcretest, -s is
-a synonym for -m.
-
-If the -t option is given, each compile, study, and match is run 20000 times
-while being timed, and the resulting time per compile or match is output in
-milliseconds. Do not set -t with -m, because you will then get the size output
-20000 times and the timing will be distorted. If you want to change the number
-of repetitions used for timing, edit the definition of LOOPREPEAT at the top of
-pcretest.c
-
-Philip Hazel
-August 2000
diff --git a/pcre/doc/perltest.txt b/pcre/doc/perltest.txt
deleted file mode 100644
index 33155c1a..00000000
--- a/pcre/doc/perltest.txt
+++ /dev/null
@@ -1,29 +0,0 @@
-The perltest program
---------------------
-
-The perltest program tests Perl's regular expressions; it has the same
-specification as pcretest, and so can be given identical input, except that
-input patterns can be followed only by Perl's lower case modifiers and /+ (as
-used by pcretest), which is recognized and handled by the program.
-
-The data lines are processed as Perl double-quoted strings, so if they contain
-" \ $ or @ characters, these have to be escaped. For this reason, all such
-characters in testinput1 and testinput3 are escaped so that they can be used
-for perltest as well as for pcretest, and the special upper case modifiers such
-as /A that pcretest recognizes are not used in these files. The output should
-be identical, apart from the initial identifying banner.
-
-For testing UTF-8 features, an alternative form of perltest, called perltest8,
-is supplied. This requires Perl 5.6 or higher. It recognizes the special
-modifier /8 that pcretest uses to invoke UTF-8 functionality. The testinput5
-file can be fed to perltest8.
-
-The testinput2 and testinput4 files are not suitable for feeding to perltest,
-since they do make use of the special upper case modifiers and escapes that
-pcretest uses to test some features of PCRE. The first of these files also
-contains malformed regular expressions, in order to check that PCRE diagnoses
-them correctly. Similarly, testinput6 tests UTF-8 features that do not relate
-to Perl.
-
-Philip Hazel
-August 2000
diff --git a/pcre/doc/readme b/pcre/doc/readme
deleted file mode 100644
index d124ee01..00000000
--- a/pcre/doc/readme
+++ /dev/null
@@ -1,270 +0,0 @@
-README file for PCRE (Perl-compatible regular expression library)
------------------------------------------------------------------
-
-The latest release of PCRE is always available from
-
- ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-xxx.tar.gz
-
-Please read the NEWS file if you are upgrading from a previous release.
-
-PCRE has its own native API, but a set of "wrapper" functions that are based on
-the POSIX API are also supplied in the library libpcreposix. Note that this
-just provides a POSIX calling interface to PCRE: the regular expressions
-themselves still follow Perl syntax and semantics. The header file
-for the POSIX-style functions is called pcreposix.h. The official POSIX name is
-regex.h, but I didn't want to risk possible problems with existing files of
-that name by distributing it that way. To use it with an existing program that
-uses the POSIX API, it will have to be renamed or pointed at by a link.
-
-
-Building PCRE on a Unix system
-------------------------------
-
-To build PCRE on a Unix system, run the "configure" command in the PCRE
-distribution directory. This is a standard GNU "autoconf" configuration script,
-for which generic instructions are supplied in INSTALL. On many systems just
-running "./configure" is sufficient, but the usual methods of changing standard
-defaults are available. For example,
-
-CFLAGS='-O2 -Wall' ./configure --prefix=/opt/local
-
-specifies that the C compiler should be run with the flags '-O2 -Wall' instead
-of the default, and that "make install" should install PCRE under /opt/local
-instead of the default /usr/local.
-
-If you want to make use of the experimential, incomplete support for UTF-8
-character strings in PCRE, you must add --enable-utf8 to the "configure"
-command. Without it, the code for handling UTF-8 is not included in the
-library. (Even when included, it still has to be enabled by an option at run
-time.)
-
-The "configure" script builds four files:
-
-. Makefile is built by copying Makefile.in and making substitutions.
-. config.h is built by copying config.in and making substitutions.
-. pcre-config is built by copying pcre-config.in and making substitutions.
-. RunTest is a script for running tests
-
-Once "configure" has run, you can run "make". It builds two libraries called
-libpcre and libpcreposix, a test program called pcretest, and the pcregrep
-command. You can use "make install" to copy these, and the public header file
-pcre.h, to appropriate live directories on your system, in the normal way.
-
-Running "make install" also installs the command pcre-config, which can be used
-to recall information about the PCRE configuration and installation. For
-example,
-
- pcre-config --version
-
-prints the version number, and
-
- pcre-config --libs
-
-outputs information about where the library is installed. This command can be
-included in makefiles for programs that use PCRE, saving the programmer from
-having to remember too many details.
-
-
-Shared libraries on Unix systems
---------------------------------
-
-The default distribution builds PCRE as two shared libraries. This support is
-new and experimental and may not work on all systems. It relies on the
-"libtool" scripts - these are distributed with PCRE. It should build a
-"libtool" script and use this to compile and link shared libraries, which are
-placed in a subdirectory called .libs. The programs pcretest and pcregrep are
-built to use these uninstalled libraries by means of wrapper scripts. When you
-use "make install" to install shared libraries, pcregrep and pcretest are
-automatically re-built to use the newly installed libraries. However, only
-pcregrep is installed, as pcretest is really just a test program.
-
-To build PCRE using static libraries you must use --disable-shared when
-configuring it. For example
-
-./configure --prefix=/usr/gnu --disable-shared
-
-Then run "make" in the usual way.
-
-
-Building on non-Unix systems
-----------------------------
-
-For a non-Unix system, read the comments in the file NON-UNIX-USE. PCRE has
-been compiled on Windows systems and on Macintoshes, but I don't know the
-details because I don't use those systems. It should be straightforward to
-build PCRE on any system that has a Standard C compiler, because it uses only
-Standard C functions.
-
-
-Testing PCRE
-------------
-
-To test PCRE on a Unix system, run the RunTest script in the pcre directory.
-(This can also be run by "make runtest", "make check", or "make test".) For
-other systems, see the instruction in NON-UNIX-USE.
-
-The script runs the pcretest test program (which is documented in
-doc/pcretest.txt) on each of the testinput files (in the testdata directory) in
-turn, and compares the output with the contents of the corresponding testoutput
-file. A file called testtry is used to hold the output from pcretest. To run
-pcretest on just one of the test files, give its number as an argument to
-RunTest, for example:
-
- RunTest 3
-
-The first and third test files can also be fed directly into the perltest
-script to check that Perl gives the same results. The third file requires the
-additional features of release 5.005, which is why it is kept separate from the
-main test input, which needs only Perl 5.004. In the long run, when 5.005 (or
-higher) is widespread, these two test files may get amalgamated.
-
-The second set of tests check pcre_fullinfo(), pcre_info(), pcre_study(),
-pcre_copy_substring(), pcre_get_substring(), pcre_get_substring_list(), error
-detection, and run-time flags that are specific to PCRE, as well as the POSIX
-wrapper API. It also uses the debugging flag to check some of the internals of
-pcre_compile().
-
-If you build PCRE with a locale setting that is not the standard C locale, the
-character tables may be different (see next paragraph). In some cases, this may
-cause failures in the second set of tests. For example, in a locale where the
-isprint() function yields TRUE for characters in the range 128-255, the use of
-[:isascii:] inside a character class defines a different set of characters, and
-this shows up in this test as a difference in the compiled code, which is being
-listed for checking. Where the comparison test output contains [\x00-\x7f] the
-test will contain [\x00-\xff], and similarly in some other cases. This is not a
-bug in PCRE.
-
-The fourth set of tests checks pcre_maketables(), the facility for building a
-set of character tables for a specific locale and using them instead of the
-default tables. The tests make use of the "fr" (French) locale. Before running
-the test, the script checks for the presence of this locale by running the
-"locale" command. If that command fails, or if it doesn't include "fr" in the
-list of available locales, the fourth test cannot be run, and a comment is
-output to say why. If running this test produces instances of the error
-
- ** Failed to set locale "fr"
-
-in the comparison output, it means that locale is not available on your system,
-despite being listed by "locale". This does not mean that PCRE is broken.
-
-The fifth test checks the experimental, incomplete UTF-8 support. It is not run
-automatically unless PCRE is built with UTF-8 support. This file can be fed
-directly to the perltest8 script, which requires Perl 5.6 or higher. The sixth
-file tests internal UTF-8 features of PCRE that are not relevant to Perl.
-
-
-Character tables
-----------------
-
-PCRE uses four tables for manipulating and identifying characters. The final
-argument of the pcre_compile() function is a pointer to a block of memory
-containing the concatenated tables. A call to pcre_maketables() can be used to
-generate a set of tables in the current locale. If the final argument for
-pcre_compile() is passed as NULL, a set of default tables that is built into
-the binary is used.
-
-The source file called chartables.c contains the default set of tables. This is
-not supplied in the distribution, but is built by the program dftables
-(compiled from dftables.c), which uses the ANSI C character handling functions
-such as isalnum(), isalpha(), isupper(), islower(), etc. to build the table
-sources. This means that the default C locale which is set for your system will
-control the contents of these default tables. You can change the default tables
-by editing chartables.c and then re-building PCRE. If you do this, you should
-probably also edit Makefile to ensure that the file doesn't ever get
-re-generated.
-
-The first two 256-byte tables provide lower casing and case flipping functions,
-respectively. The next table consists of three 32-byte bit maps which identify
-digits, "word" characters, and white space, respectively. These are used when
-building 32-byte bit maps that represent character classes.
-
-The final 256-byte table has bits indicating various character types, as
-follows:
-
- 1 white space character
- 2 letter
- 4 decimal digit
- 8 hexadecimal digit
- 16 alphanumeric or '_'
- 128 regular expression metacharacter or binary zero
-
-You should not alter the set of characters that contain the 128 bit, as that
-will cause PCRE to malfunction.
-
-
-Manifest
---------
-
-The distribution should contain the following files:
-
-(A) The actual source files of the PCRE library functions and their
- headers:
-
- dftables.c auxiliary program for building chartables.c
- get.c )
- maketables.c )
- study.c ) source of
- pcre.c ) the functions
- pcreposix.c )
- pcre.in "source" for the header for the external API; pcre.h
- is built from this by "configure"
- pcreposix.h header for the external POSIX wrapper API
- internal.h header for internal use
- config.in template for config.h, which is built by configure
-
-(B) Auxiliary files:
-
- AUTHORS information about the author of PCRE
- ChangeLog log of changes to the code
- INSTALL generic installation instructions
- LICENCE conditions for the use of PCRE
- COPYING the same, using GNU's standard name
- Makefile.in template for Unix Makefile, which is built by configure
- NEWS important changes in this release
- NON-UNIX-USE notes on building PCRE on non-Unix systems
- README this file
- RunTest.in template for a Unix shell script for running tests
- config.guess ) files used by libtool,
- config.sub ) used only when building a shared library
- configure a configuring shell script (built by autoconf)
- configure.in the autoconf input used to build configure
- doc/Tech.Notes notes on the encoding
- doc/pcre.3 man page source for the PCRE functions
- doc/pcre.html HTML version
- doc/pcre.txt plain text version
- doc/pcreposix.3 man page source for the POSIX wrapper API
- doc/pcreposix.html HTML version
- doc/pcreposix.txt plain text version
- doc/pcretest.txt documentation of test program
- doc/perltest.txt documentation of Perl test program
- doc/pcregrep.1 man page source for the pcregrep utility
- doc/pcregrep.html HTML version
- doc/pcregrep.txt plain text version
- install-sh a shell script for installing files
- ltconfig ) files used to build "libtool",
- ltmain.sh ) used only when building a shared library
- pcretest.c test program
- perltest Perl test program
- perltest8 Perl test program for UTF-8 tests
- pcregrep.c source of a grep utility that uses PCRE
- pcre-config.in source of script which retains PCRE information
- testdata/testinput1 test data, compatible with Perl 5.004 and 5.005
- testdata/testinput2 test data for error messages and non-Perl things
- testdata/testinput3 test data, compatible with Perl 5.005
- testdata/testinput4 test data for locale-specific tests
- testdata/testinput5 test data for UTF-8 tests compatible with Perl 5.6
- testdata/testinput6 test data for other UTF-8 tests
- testdata/testoutput1 test results corresponding to testinput1
- testdata/testoutput2 test results corresponding to testinput2
- testdata/testoutput3 test results corresponding to testinput3
- testdata/testoutput4 test results corresponding to testinput4
- testdata/testoutput5 test results corresponding to testinput5
- testdata/testoutput6 test results corresponding to testinput6
-
-(C) Auxiliary files for Win32 DLL
-
- dll.mk
- pcre.def
-
-Philip Hazel
-August 2000
diff --git a/pcre/get.c b/pcre/get.c
deleted file mode 100644
index 42e9bd49..00000000
--- a/pcre/get.c
+++ /dev/null
@@ -1,227 +0,0 @@
-/*************************************************
-* Perl-Compatible Regular Expressions *
-*************************************************/
-
-/*
-This is a library of functions to support regular expressions whose syntax
-and semantics are as close as possible to those of the Perl 5 language. See
-the file Tech.Notes for some information on the internals.
-
-Written by: Philip Hazel
-
- Copyright (c) 1997-2000 University of Cambridge
-
------------------------------------------------------------------------------
-Permission is granted to anyone to use this software for any purpose on any
-computer system, and to redistribute it freely, subject to the following
-restrictions:
-
-1. This software is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-
-2. The origin of this software must not be misrepresented, either by
- explicit claim or by omission.
-
-3. Altered versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
-
-4. If PCRE is embedded in any software that is released under the GNU
- General Purpose Licence (GPL), then the terms of that licence shall
- supersede any condition above with which it is incompatible.
------------------------------------------------------------------------------
-*/
-
-/* This module contains some convenience functions for extracting substrings
-from the subject string after a regex match has succeeded. The original idea
-for these functions came from Scott Wimer . */
-
-
-/* Include the internals header, which itself includes Standard C headers plus
-the external pcre header. */
-
-#include "internal.h"
-
-
-
-/*************************************************
-* Copy captured string to given buffer *
-*************************************************/
-
-/* This function copies a single captured substring into a given buffer.
-Note that we use memcpy() rather than strncpy() in case there are binary zeros
-in the string.
-
-Arguments:
- subject the subject string that was matched
- ovector pointer to the offsets table
- stringcount the number of substrings that were captured
- (i.e. the yield of the pcre_exec call, unless
- that was zero, in which case it should be 1/3
- of the offset table size)
- stringnumber the number of the required substring
- buffer where to put the substring
- size the size of the buffer
-
-Returns: if successful:
- the length of the copied string, not including the zero
- that is put on the end; can be zero
- if not successful:
- PCRE_ERROR_NOMEMORY (-6) buffer too small
- PCRE_ERROR_NOSUBSTRING (-7) no such captured substring
-*/
-
-int
-pcre_copy_substring(const char *subject, int *ovector, int stringcount,
- int stringnumber, char *buffer, int size)
-{
-int yield;
-if (stringnumber < 0 || stringnumber >= stringcount)
- return PCRE_ERROR_NOSUBSTRING;
-stringnumber *= 2;
-yield = ovector[stringnumber+1] - ovector[stringnumber];
-if (size < yield + 1) return PCRE_ERROR_NOMEMORY;
-memcpy(buffer, subject + ovector[stringnumber], yield);
-buffer[yield] = 0;
-return yield;
-}
-
-
-
-/*************************************************
-* Copy all captured strings to new store *
-*************************************************/
-
-/* This function gets one chunk of store and builds a list of pointers and all
-of the captured substrings in it. A NULL pointer is put on the end of the list.
-
-Arguments:
- subject the subject string that was matched
- ovector pointer to the offsets table
- stringcount the number of substrings that were captured
- (i.e. the yield of the pcre_exec call, unless
- that was zero, in which case it should be 1/3
- of the offset table size)
- listptr set to point to the list of pointers
-
-Returns: if successful: 0
- if not successful:
- PCRE_ERROR_NOMEMORY (-6) failed to get store
-*/
-
-int
-pcre_get_substring_list(const char *subject, int *ovector, int stringcount,
- const char ***listptr)
-{
-int i;
-int size = sizeof(char *);
-int double_count = stringcount * 2;
-char **stringlist;
-char *p;
-
-for (i = 0; i < double_count; i += 2)
- size += sizeof(char *) + ovector[i+1] - ovector[i] + 1;
-
-stringlist = (char **)(pcre_malloc)(size);
-if (stringlist == NULL) return PCRE_ERROR_NOMEMORY;
-
-*listptr = (const char **)stringlist;
-p = (char *)(stringlist + stringcount + 1);
-
-for (i = 0; i < double_count; i += 2)
- {
- int len = ovector[i+1] - ovector[i];
- memcpy(p, subject + ovector[i], len);
- *stringlist++ = p;
- p += len;
- *p++ = 0;
- }
-
-*stringlist = NULL;
-return 0;
-}
-
-
-
-/*************************************************
-* Free store obtained by get_substring_list *
-*************************************************/
-
-/* This function exists for the benefit of people calling PCRE from non-C
-programs that can call its functions, but not free() or (pcre_free)() directly.
-
-Argument: the result of a previous pcre_get_substring_list()
-Returns: nothing
-*/
-
-void
-pcre_free_substring_list(const char **pointer)
-{
-(pcre_free)((void *)pointer);
-}
-
-
-
-/*************************************************
-* Copy captured string to new store *
-*************************************************/
-
-/* This function copies a single captured substring into a piece of new
-store
-
-Arguments:
- subject the subject string that was matched
- ovector pointer to the offsets table
- stringcount the number of substrings that were captured
- (i.e. the yield of the pcre_exec call, unless
- that was zero, in which case it should be 1/3
- of the offset table size)
- stringnumber the number of the required substring
- stringptr where to put a pointer to the substring
-
-Returns: if successful:
- the length of the string, not including the zero that
- is put on the end; can be zero
- if not successful:
- PCRE_ERROR_NOMEMORY (-6) failed to get store
- PCRE_ERROR_NOSUBSTRING (-7) substring not present
-*/
-
-int
-pcre_get_substring(const char *subject, int *ovector, int stringcount,
- int stringnumber, const char **stringptr)
-{
-int yield;
-char *substring;
-if (stringnumber < 0 || stringnumber >= stringcount)
- return PCRE_ERROR_NOSUBSTRING;
-stringnumber *= 2;
-yield = ovector[stringnumber+1] - ovector[stringnumber];
-substring = (char *)(pcre_malloc)(yield + 1);
-if (substring == NULL) return PCRE_ERROR_NOMEMORY;
-memcpy(substring, subject + ovector[stringnumber], yield);
-substring[yield] = 0;
-*stringptr = substring;
-return yield;
-}
-
-
-
-/*************************************************
-* Free store obtained by get_substring *
-*************************************************/
-
-/* This function exists for the benefit of people calling PCRE from non-C
-programs that can call its functions, but not free() or (pcre_free)() directly.
-
-Argument: the result of a previous pcre_get_substring()
-Returns: nothing
-*/
-
-void
-pcre_free_substring(const char *pointer)
-{
-(pcre_free)((void *)pointer);
-}
-
-/* End of get.c */
diff --git a/pcre/install b/pcre/install
deleted file mode 100644
index 08802812..00000000
--- a/pcre/install
+++ /dev/null
@@ -1,185 +0,0 @@
-Basic Installation
-==================
-
- These are generic installation instructions that apply to systems that
-can run the `configure' shell script - Unix systems and any that imitate
-it. They are not specific to PCRE. There are PCRE-specific instructions
-for non-Unix systems in the file NON-UNIX-USE.
-
- The `configure' shell script attempts to guess correct values for
-various system-dependent variables used during compilation. It uses
-those values to create a `Makefile' in each directory of the package.
-It may also create one or more `.h' files containing system-dependent
-definitions. Finally, it creates a shell script `config.status' that
-you can run in the future to recreate the current configuration, a file
-`config.cache' that saves the results of its tests to speed up
-reconfiguring, and a file `config.log' containing compiler output
-(useful mainly for debugging `configure').
-
- If you need to do unusual things to compile the package, please try
-to figure out how `configure' could check whether to do them, and mail
-diffs or instructions to the address given in the `README' so they can
-be considered for the next release. If at some point `config.cache'
-contains results you don't want to keep, you may remove or edit it.
-
- The file `configure.in' is used to create `configure' by a program
-called `autoconf'. You only need `configure.in' if you want to change
-it or regenerate `configure' using a newer version of `autoconf'.
-
-The simplest way to compile this package is:
-
- 1. `cd' to the directory containing the package's source code and type
- `./configure' to configure the package for your system. If you're
- using `csh' on an old version of System V, you might need to type
- `sh ./configure' instead to prevent `csh' from trying to execute
- `configure' itself.
-
- Running `configure' takes awhile. While running, it prints some
- messages telling which features it is checking for.
-
- 2. Type `make' to compile the package.
-
- 3. Optionally, type `make check' to run any self-tests that come with
- the package.
-
- 4. Type `make install' to install the programs and any data files and
- documentation.
-
- 5. You can remove the program binaries and object files from the
- source code directory by typing `make clean'. To also remove the
- files that `configure' created (so you can compile the package for
- a different kind of computer), type `make distclean'. There is
- also a `make maintainer-clean' target, but that is intended mainly
- for the package's developers. If you use it, you may have to get
- all sorts of other programs in order to regenerate files that came
- with the distribution.
-
-Compilers and Options
-=====================
-
- Some systems require unusual options for compilation or linking that
-the `configure' script does not know about. You can give `configure'
-initial values for variables by setting them in the environment. Using
-a Bourne-compatible shell, you can do that on the command line like
-this:
- CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure
-
-Or on systems that have the `env' program, you can do it like this:
- env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure
-
-Compiling For Multiple Architectures
-====================================
-
- You can compile the package for more than one kind of computer at the
-same time, by placing the object files for each architecture in their
-own directory. To do this, you must use a version of `make' that
-supports the `VPATH' variable, such as GNU `make'. `cd' to the
-directory where you want the object files and executables to go and run
-the `configure' script. `configure' automatically checks for the
-source code in the directory that `configure' is in and in `..'.
-
- If you have to use a `make' that does not supports the `VPATH'
-variable, you have to compile the package for one architecture at a time
-in the source code directory. After you have installed the package for
-one architecture, use `make distclean' before reconfiguring for another
-architecture.
-
-Installation Names
-==================
-
- By default, `make install' will install the package's files in
-`/usr/local/bin', `/usr/local/man', etc. You can specify an
-installation prefix other than `/usr/local' by giving `configure' the
-option `--prefix=PATH'.
-
- You can specify separate installation prefixes for
-architecture-specific files and architecture-independent files. If you
-give `configure' the option `--exec-prefix=PATH', the package will use
-PATH as the prefix for installing programs and libraries.
-Documentation and other data files will still use the regular prefix.
-
- In addition, if you use an unusual directory layout you can give
-options like `--bindir=PATH' to specify different values for particular
-kinds of files. Run `configure --help' for a list of the directories
-you can set and what kinds of files go in them.
-
- If the package supports it, you can cause programs to be installed
-with an extra prefix or suffix on their names by giving `configure' the
-option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.
-
-Optional Features
-=================
-
- Some packages pay attention to `--enable-FEATURE' options to
-`configure', where FEATURE indicates an optional part of the package.
-They may also pay attention to `--with-PACKAGE' options, where PACKAGE
-is something like `gnu-as' or `x' (for the X Window System). The
-`README' should mention any `--enable-' and `--with-' options that the
-package recognizes.
-
- For packages that use the X Window System, `configure' can usually
-find the X include and library files automatically, but if it doesn't,
-you can use the `configure' options `--x-includes=DIR' and
-`--x-libraries=DIR' to specify their locations.
-
-Specifying the System Type
-==========================
-
- There may be some features `configure' can not figure out
-automatically, but needs to determine by the type of host the package
-will run on. Usually `configure' can figure that out, but if it prints
-a message saying it can not guess the host type, give it the
-`--host=TYPE' option. TYPE can either be a short name for the system
-type, such as `sun4', or a canonical name with three fields:
- CPU-COMPANY-SYSTEM
-
-See the file `config.sub' for the possible values of each field. If
-`config.sub' isn't included in this package, then this package doesn't
-need to know the host type.
-
- If you are building compiler tools for cross-compiling, you can also
-use the `--target=TYPE' option to select the type of system they will
-produce code for and the `--build=TYPE' option to select the type of
-system on which you are compiling the package.
-
-Sharing Defaults
-================
-
- If you want to set default values for `configure' scripts to share,
-you can create a site shell script called `config.site' that gives
-default values for variables like `CC', `cache_file', and `prefix'.
-`configure' looks for `PREFIX/share/config.site' if it exists, then
-`PREFIX/etc/config.site' if it exists. Or, you can set the
-`CONFIG_SITE' environment variable to the location of the site script.
-A warning: not all `configure' scripts look for a site script.
-
-Operation Controls
-==================
-
- `configure' recognizes the following options to control how it
-operates.
-
-`--cache-file=FILE'
- Use and save the results of the tests in FILE instead of
- `./config.cache'. Set FILE to `/dev/null' to disable caching, for
- debugging `configure'.
-
-`--help'
- Print a summary of the options to `configure', and exit.
-
-`--quiet'
-`--silent'
-`-q'
- Do not print messages saying which checks are being made. To
- suppress all normal output, redirect it to `/dev/null' (any error
- messages will still be shown).
-
-`--srcdir=DIR'
- Look for the package's source code in directory DIR. Usually
- `configure' can determine that directory automatically.
-
-`--version'
- Print the version of Autoconf used to generate the `configure'
- script, and exit.
-
-`configure' also accepts some other, not widely useful, options.
diff --git a/pcre/install-sh b/pcre/install-sh
deleted file mode 100644
index e9de2384..00000000
--- a/pcre/install-sh
+++ /dev/null
@@ -1,251 +0,0 @@
-#!/bin/sh
-#
-# install - install a program, script, or datafile
-# This comes from X11R5 (mit/util/scripts/install.sh).
-#
-# Copyright 1991 by the Massachusetts Institute of Technology
-#
-# Permission to use, copy, modify, distribute, and sell this software and its
-# documentation for any purpose is hereby granted without fee, provided that
-# the above copyright notice appear in all copies and that both that
-# copyright notice and this permission notice appear in supporting
-# documentation, and that the name of M.I.T. not be used in advertising or
-# publicity pertaining to distribution of the software without specific,
-# written prior permission. M.I.T. makes no representations about the
-# suitability of this software for any purpose. It is provided "as is"
-# without express or implied warranty.
-#
-# Calling this script install-sh is preferred over install.sh, to prevent
-# `make' implicit rules from creating a file called install from it
-# when there is no Makefile.
-#
-# This script is compatible with the BSD install script, but was written
-# from scratch. It can only install one file at a time, a restriction
-# shared with many OS's install programs.
-
-
-# set DOITPROG to echo to test this script
-
-# Don't use :- since 4.3BSD and earlier shells don't like it.
-doit="${DOITPROG-}"
-
-
-# put in absolute paths if you don't have them in your path; or use env. vars.
-
-mvprog="${MVPROG-mv}"
-cpprog="${CPPROG-cp}"
-chmodprog="${CHMODPROG-chmod}"
-chownprog="${CHOWNPROG-chown}"
-chgrpprog="${CHGRPPROG-chgrp}"
-stripprog="${STRIPPROG-strip}"
-rmprog="${RMPROG-rm}"
-mkdirprog="${MKDIRPROG-mkdir}"
-
-transformbasename=""
-transform_arg=""
-instcmd="$mvprog"
-chmodcmd="$chmodprog 0755"
-chowncmd=""
-chgrpcmd=""
-stripcmd=""
-rmcmd="$rmprog -f"
-mvcmd="$mvprog"
-src=""
-dst=""
-dir_arg=""
-
-while [ x"$1" != x ]; do
- case $1 in
- -c) instcmd="$cpprog"
- shift
- continue;;
-
- -d) dir_arg=true
- shift
- continue;;
-
- -m) chmodcmd="$chmodprog $2"
- shift
- shift
- continue;;
-
- -o) chowncmd="$chownprog $2"
- shift
- shift
- continue;;
-
- -g) chgrpcmd="$chgrpprog $2"
- shift
- shift
- continue;;
-
- -s) stripcmd="$stripprog"
- shift
- continue;;
-
- -t=*) transformarg=`echo $1 | sed 's/-t=//'`
- shift
- continue;;
-
- -b=*) transformbasename=`echo $1 | sed 's/-b=//'`
- shift
- continue;;
-
- *) if [ x"$src" = x ]
- then
- src=$1
- else
- # this colon is to work around a 386BSD /bin/sh bug
- :
- dst=$1
- fi
- shift
- continue;;
- esac
-done
-
-if [ x"$src" = x ]
-then
- echo "install: no input file specified"
- exit 1
-else
- true
-fi
-
-if [ x"$dir_arg" != x ]; then
- dst=$src
- src=""
-
- if [ -d $dst ]; then
- instcmd=:
- chmodcmd=""
- else
- instcmd=mkdir
- fi
-else
-
-# Waiting for this to be detected by the "$instcmd $src $dsttmp" command
-# might cause directories to be created, which would be especially bad
-# if $src (and thus $dsttmp) contains '*'.
-
- if [ -f $src -o -d $src ]
- then
- true
- else
- echo "install: $src does not exist"
- exit 1
- fi
-
- if [ x"$dst" = x ]
- then
- echo "install: no destination specified"
- exit 1
- else
- true
- fi
-
-# If destination is a directory, append the input filename; if your system
-# does not like double slashes in filenames, you may need to add some logic
-
- if [ -d $dst ]
- then
- dst="$dst"/`basename $src`
- else
- true
- fi
-fi
-
-## this sed command emulates the dirname command
-dstdir=`echo $dst | sed -e 's,[^/]*$,,;s,/$,,;s,^$,.,'`
-
-# Make sure that the destination directory exists.
-# this part is taken from Noah Friedman's mkinstalldirs script
-
-# Skip lots of stat calls in the usual case.
-if [ ! -d "$dstdir" ]; then
-defaultIFS='
-'
-IFS="${IFS-${defaultIFS}}"
-
-oIFS="${IFS}"
-# Some sh's can't handle IFS=/ for some reason.
-IFS='%'
-set - `echo ${dstdir} | sed -e 's@/@%@g' -e 's@^%@/@'`
-IFS="${oIFS}"
-
-pathcomp=''
-
-while [ $# -ne 0 ] ; do
- pathcomp="${pathcomp}${1}"
- shift
-
- if [ ! -d "${pathcomp}" ] ;
- then
- $mkdirprog "${pathcomp}"
- else
- true
- fi
-
- pathcomp="${pathcomp}/"
-done
-fi
-
-if [ x"$dir_arg" != x ]
-then
- $doit $instcmd $dst &&
-
- if [ x"$chowncmd" != x ]; then $doit $chowncmd $dst; else true ; fi &&
- if [ x"$chgrpcmd" != x ]; then $doit $chgrpcmd $dst; else true ; fi &&
- if [ x"$stripcmd" != x ]; then $doit $stripcmd $dst; else true ; fi &&
- if [ x"$chmodcmd" != x ]; then $doit $chmodcmd $dst; else true ; fi
-else
-
-# If we're going to rename the final executable, determine the name now.
-
- if [ x"$transformarg" = x ]
- then
- dstfile=`basename $dst`
- else
- dstfile=`basename $dst $transformbasename |
- sed $transformarg`$transformbasename
- fi
-
-# don't allow the sed command to completely eliminate the filename
-
- if [ x"$dstfile" = x ]
- then
- dstfile=`basename $dst`
- else
- true
- fi
-
-# Make a temp file name in the proper directory.
-
- dsttmp=$dstdir/#inst.$$#
-
-# Move or copy the file name to the temp name
-
- $doit $instcmd $src $dsttmp &&
-
- trap "rm -f ${dsttmp}" 0 &&
-
-# and set any options; do chmod last to preserve setuid bits
-
-# If any of these fail, we abort the whole thing. If we want to
-# ignore errors from any of these, just make sure not to ignore
-# errors from the above "$doit $instcmd $src $dsttmp" command.
-
- if [ x"$chowncmd" != x ]; then $doit $chowncmd $dsttmp; else true;fi &&
- if [ x"$chgrpcmd" != x ]; then $doit $chgrpcmd $dsttmp; else true;fi &&
- if [ x"$stripcmd" != x ]; then $doit $stripcmd $dsttmp; else true;fi &&
- if [ x"$chmodcmd" != x ]; then $doit $chmodcmd $dsttmp; else true;fi &&
-
-# Now rename the file to the real destination.
-
- $doit $rmcmd -f $dstdir/$dstfile &&
- $doit $mvcmd $dsttmp $dstdir/$dstfile
-
-fi &&
-
-
-exit 0
diff --git a/pcre/internal.h b/pcre/internal.h
deleted file mode 100644
index 25bb7f8f..00000000
--- a/pcre/internal.h
+++ /dev/null
@@ -1,381 +0,0 @@
-/*************************************************
-* Perl-Compatible Regular Expressions *
-*************************************************/
-
-
-/* This is a library of functions to support regular expressions whose syntax
-and semantics are as close as possible to those of the Perl 5 language. See
-the file Tech.Notes for some information on the internals.
-
-Written by: Philip Hazel
-
- Copyright (c) 1997-2000 University of Cambridge
-
------------------------------------------------------------------------------
-Permission is granted to anyone to use this software for any purpose on any
-computer system, and to redistribute it freely, subject to the following
-restrictions:
-
-1. This software is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-
-2. The origin of this software must not be misrepresented, either by
- explicit claim or by omission.
-
-3. Altered versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
-
-4. If PCRE is embedded in any software that is released under the GNU
- General Purpose Licence (GPL), then the terms of that licence shall
- supersede any condition above with which it is incompatible.
------------------------------------------------------------------------------
-*/
-
-/* This header contains definitions that are shared between the different
-modules, but which are not relevant to the outside. */
-
-/* Get the definitions provided by running "configure" */
-
-#include "config.h"
-
-/* To cope with SunOS4 and other systems that lack memmove() but have bcopy(),
-define a macro for memmove() if HAVE_MEMMOVE is false, provided that HAVE_BCOPY
-is set. Otherwise, include an emulating function for those systems that have
-neither (there some non-Unix environments where this is the case). This assumes
-that all calls to memmove are moving strings upwards in store, which is the
-case in PCRE. */
-
-#if ! HAVE_MEMMOVE
-#undef memmove /* some systems may have a macro */
-#if HAVE_BCOPY
-#define memmove(a, b, c) bcopy(b, a, c)
-#else
-void *
-pcre_memmove(unsigned char *dest, const unsigned char *src, size_t n)
-{
-int i;
-dest += n;
-src += n;
-for (i = 0; i < n; ++i) *(--dest) = *(--src);
-}
-#define memmove(a, b, c) pcre_memmove(a, b, c)
-#endif
-#endif
-
-/* Standard C headers plus the external interface definition */
-
-#include
-#include
-#include
-#include
-#include
-#include
-#include "pcre.h"
-
-/* In case there is no definition of offsetof() provided - though any proper
-Standard C system should have one. */
-
-#ifndef offsetof
-#define offsetof(p_type,field) ((size_t)&(((p_type *)0)->field))
-#endif
-
-/* These are the public options that can change during matching. */
-
-#define PCRE_IMS (PCRE_CASELESS|PCRE_MULTILINE|PCRE_DOTALL)
-
-/* Private options flags start at the most significant end of the four bytes,
-but skip the top bit so we can use ints for convenience without getting tangled
-with negative values. The public options defined in pcre.h start at the least
-significant end. Make sure they don't overlap, though now that we have expanded
-to four bytes there is plenty of space. */
-
-#define PCRE_FIRSTSET 0x40000000 /* first_char is set */
-#define PCRE_REQCHSET 0x20000000 /* req_char is set */
-#define PCRE_STARTLINE 0x10000000 /* start after \n for multiline */
-#define PCRE_INGROUP 0x08000000 /* compiling inside a group */
-#define PCRE_ICHANGED 0x04000000 /* i option changes within regex */
-
-/* Options for the "extra" block produced by pcre_study(). */
-
-#define PCRE_STUDY_MAPPED 0x01 /* a map of starting chars exists */
-
-/* Masks for identifying the public options which are permitted at compile
-time, run time or study time, respectively. */
-
-#define PUBLIC_OPTIONS \
- (PCRE_CASELESS|PCRE_EXTENDED|PCRE_ANCHORED|PCRE_MULTILINE| \
- PCRE_DOTALL|PCRE_DOLLAR_ENDONLY|PCRE_EXTRA|PCRE_UNGREEDY|PCRE_UTF8)
-
-#define PUBLIC_EXEC_OPTIONS \
- (PCRE_ANCHORED|PCRE_NOTBOL|PCRE_NOTEOL|PCRE_NOTEMPTY)
-
-#define PUBLIC_STUDY_OPTIONS 0 /* None defined */
-
-/* Magic number to provide a small check against being handed junk. */
-
-#define MAGIC_NUMBER 0x50435245UL /* 'PCRE' */
-
-/* Miscellaneous definitions */
-
-typedef int BOOL;
-
-#define FALSE 0
-#define TRUE 1
-
-/* These are escaped items that aren't just an encoding of a particular data
-value such as \n. They must have non-zero values, as check_escape() returns
-their negation. Also, they must appear in the same order as in the opcode
-definitions below, up to ESC_z. The final one must be ESC_REF as subsequent
-values are used for \1, \2, \3, etc. There is a test in the code for an escape
-greater than ESC_b and less than ESC_X to detect the types that may be
-repeated. If any new escapes are put in-between that don't consume a character,
-that code will have to change. */
-
-enum { ESC_A = 1, ESC_B, ESC_b, ESC_D, ESC_d, ESC_S, ESC_s, ESC_W, ESC_w,
- ESC_Z, ESC_z, ESC_REF };
-
-/* Opcode table: OP_BRA must be last, as all values >= it are used for brackets
-that extract substrings. Starting from 1 (i.e. after OP_END), the values up to
-OP_EOD must correspond in order to the list of escapes immediately above. */
-
-enum {
- OP_END, /* End of pattern */
-
- /* Values corresponding to backslashed metacharacters */
-
- OP_SOD, /* Start of data: \A */
- OP_NOT_WORD_BOUNDARY, /* \B */
- OP_WORD_BOUNDARY, /* \b */
- OP_NOT_DIGIT, /* \D */
- OP_DIGIT, /* \d */
- OP_NOT_WHITESPACE, /* \S */
- OP_WHITESPACE, /* \s */
- OP_NOT_WORDCHAR, /* \W */
- OP_WORDCHAR, /* \w */
- OP_EODN, /* End of data or \n at end of data: \Z. */
- OP_EOD, /* End of data: \z */
-
- OP_OPT, /* Set runtime options */
- OP_CIRC, /* Start of line - varies with multiline switch */
- OP_DOLL, /* End of line - varies with multiline switch */
- OP_ANY, /* Match any character */
- OP_CHARS, /* Match string of characters */
- OP_NOT, /* Match anything but the following char */
-
- OP_STAR, /* The maximizing and minimizing versions of */
- OP_MINSTAR, /* all these opcodes must come in pairs, with */
- OP_PLUS, /* the minimizing one second. */
- OP_MINPLUS, /* This first set applies to single characters */
- OP_QUERY,
- OP_MINQUERY,
- OP_UPTO, /* From 0 to n matches */
- OP_MINUPTO,
- OP_EXACT, /* Exactly n matches */
-
- OP_NOTSTAR, /* The maximizing and minimizing versions of */
- OP_NOTMINSTAR, /* all these opcodes must come in pairs, with */
- OP_NOTPLUS, /* the minimizing one second. */
- OP_NOTMINPLUS, /* This first set applies to "not" single characters */
- OP_NOTQUERY,
- OP_NOTMINQUERY,
- OP_NOTUPTO, /* From 0 to n matches */
- OP_NOTMINUPTO,
- OP_NOTEXACT, /* Exactly n matches */
-
- OP_TYPESTAR, /* The maximizing and minimizing versions of */
- OP_TYPEMINSTAR, /* all these opcodes must come in pairs, with */
- OP_TYPEPLUS, /* the minimizing one second. These codes must */
- OP_TYPEMINPLUS, /* be in exactly the same order as those above. */
- OP_TYPEQUERY, /* This set applies to character types such as \d */
- OP_TYPEMINQUERY,
- OP_TYPEUPTO, /* From 0 to n matches */
- OP_TYPEMINUPTO,
- OP_TYPEEXACT, /* Exactly n matches */
-
- OP_CRSTAR, /* The maximizing and minimizing versions of */
- OP_CRMINSTAR, /* all these opcodes must come in pairs, with */
- OP_CRPLUS, /* the minimizing one second. These codes must */
- OP_CRMINPLUS, /* be in exactly the same order as those above. */
- OP_CRQUERY, /* These are for character classes and back refs */
- OP_CRMINQUERY,
- OP_CRRANGE, /* These are different to the three seta above. */
- OP_CRMINRANGE,
-
- OP_CLASS, /* Match a character class */
- OP_REF, /* Match a back reference */
- OP_RECURSE, /* Match this pattern recursively */
-
- OP_ALT, /* Start of alternation */
- OP_KET, /* End of group that doesn't have an unbounded repeat */
- OP_KETRMAX, /* These two must remain together and in this */
- OP_KETRMIN, /* order. They are for groups the repeat for ever. */
-
- /* The assertions must come before ONCE and COND */
-
- OP_ASSERT, /* Positive lookahead */
- OP_ASSERT_NOT, /* Negative lookahead */
- OP_ASSERTBACK, /* Positive lookbehind */
- OP_ASSERTBACK_NOT, /* Negative lookbehind */
- OP_REVERSE, /* Move pointer back - used in lookbehind assertions */
-
- /* ONCE and COND must come after the assertions, with ONCE first, as there's
- a test for >= ONCE for a subpattern that isn't an assertion. */
-
- OP_ONCE, /* Once matched, don't back up into the subpattern */
- OP_COND, /* Conditional group */
- OP_CREF, /* Used to hold an extraction string number */
-
- OP_BRAZERO, /* These two must remain together and in this */
- OP_BRAMINZERO, /* order. */
-
- OP_BRA /* This and greater values are used for brackets that
- extract substrings. */
-};
-
-/* The highest extraction number. This is limited by the number of opcodes
-left after OP_BRA, i.e. 255 - OP_BRA. We actually set it somewhat lower. */
-
-#define EXTRACT_MAX 99
-
-/* The texts of compile-time error messages are defined as macros here so that
-they can be accessed by the POSIX wrapper and converted into error codes. Yes,
-I could have used error codes in the first place, but didn't feel like changing
-just to accommodate the POSIX wrapper. */
-
-#define ERR1 "\\ at end of pattern"
-#define ERR2 "\\c at end of pattern"
-#define ERR3 "unrecognized character follows \\"
-#define ERR4 "numbers out of order in {} quantifier"
-#define ERR5 "number too big in {} quantifier"
-#define ERR6 "missing terminating ] for character class"
-#define ERR7 "invalid escape sequence in character class"
-#define ERR8 "range out of order in character class"
-#define ERR9 "nothing to repeat"
-#define ERR10 "operand of unlimited repeat could match the empty string"
-#define ERR11 "internal error: unexpected repeat"
-#define ERR12 "unrecognized character after (?"
-#define ERR13 "too many capturing parenthesized sub-patterns"
-#define ERR14 "missing )"
-#define ERR15 "back reference to non-existent subpattern"
-#define ERR16 "erroffset passed as NULL"
-#define ERR17 "unknown option bit(s) set"
-#define ERR18 "missing ) after comment"
-#define ERR19 "too many sets of parentheses"
-#define ERR20 "regular expression too large"
-#define ERR21 "failed to get memory"
-#define ERR22 "unmatched parentheses"
-#define ERR23 "internal error: code overflow"
-#define ERR24 "unrecognized character after (?<"
-#define ERR25 "lookbehind assertion is not fixed length"
-#define ERR26 "malformed number after (?("
-#define ERR27 "conditional group contains more than two branches"
-#define ERR28 "assertion expected after (?("
-#define ERR29 "(?p must be followed by )"
-#define ERR30 "unknown POSIX class name"
-#define ERR31 "POSIX collating elements are not supported"
-#define ERR32 "this version of PCRE is not compiled with PCRE_UTF8 support"
-#define ERR33 "characters with values > 255 are not yet supported in classes"
-#define ERR34 "character value in \\x{...} sequence is too large"
-#define ERR35 "invalid condition (?(0)"
-
-/* All character handling must be done as unsigned characters. Otherwise there
-are problems with top-bit-set characters and functions such as isspace().
-However, we leave the interface to the outside world as char *, because that
-should make things easier for callers. We define a short type for unsigned char
-to save lots of typing. I tried "uchar", but it causes problems on Digital
-Unix, where it is defined in sys/types, so use "uschar" instead. */
-
-typedef unsigned char uschar;
-
-/* The real format of the start of the pcre block; the actual code vector
-runs on as long as necessary after the end. */
-
-typedef struct real_pcre {
- unsigned long int magic_number;
- size_t size;
- const unsigned char *tables;
- unsigned long int options;
- uschar top_bracket;
- uschar top_backref;
- uschar first_char;
- uschar req_char;
- uschar code[1];
-} real_pcre;
-
-/* The real format of the extra block returned by pcre_study(). */
-
-typedef struct real_pcre_extra {
- uschar options;
- uschar start_bits[32];
-} real_pcre_extra;
-
-
-/* Structure for passing "static" information around between the functions
-doing the compiling, so that they are thread-safe. */
-
-typedef struct compile_data {
- const uschar *lcc; /* Points to lower casing table */
- const uschar *fcc; /* Points to case-flipping table */
- const uschar *cbits; /* Points to character type table */
- const uschar *ctypes; /* Points to table of type maps */
-} compile_data;
-
-/* Structure for passing "static" information around between the functions
-doing the matching, so that they are thread-safe. */
-
-typedef struct match_data {
- int errorcode; /* As it says */
- int *offset_vector; /* Offset vector */
- int offset_end; /* One past the end */
- int offset_max; /* The maximum usable for return data */
- const uschar *lcc; /* Points to lower casing table */
- const uschar *ctypes; /* Points to table of type maps */
- BOOL offset_overflow; /* Set if too many extractions */
- BOOL notbol; /* NOTBOL flag */
- BOOL noteol; /* NOTEOL flag */
- BOOL utf8; /* UTF8 flag */
- BOOL endonly; /* Dollar not before final \n */
- BOOL notempty; /* Empty string match not wanted */
- const uschar *start_pattern; /* For use when recursing */
- const uschar *start_subject; /* Start of the subject string */
- const uschar *end_subject; /* End of the subject string */
- const uschar *start_match; /* Start of this match attempt */
- const uschar *end_match_ptr; /* Subject position at end match */
- int end_offset_top; /* Highwater mark at end of match */
-} match_data;
-
-/* Bit definitions for entries in the pcre_ctypes table. */
-
-#define ctype_space 0x01
-#define ctype_letter 0x02
-#define ctype_digit 0x04
-#define ctype_xdigit 0x08
-#define ctype_word 0x10 /* alphameric or '_' */
-#define ctype_meta 0x80 /* regexp meta char or zero (end pattern) */
-
-/* Offsets for the bitmap tables in pcre_cbits. Each table contains a set
-of bits for a class map. Some classes are built by combining these tables. */
-
-#define cbit_space 0 /* [:space:] or \s */
-#define cbit_xdigit 32 /* [:xdigit:] */
-#define cbit_digit 64 /* [:digit:] or \d */
-#define cbit_upper 96 /* [:upper:] */
-#define cbit_lower 128 /* [:lower:] */
-#define cbit_word 160 /* [:word:] or \w */
-#define cbit_graph 192 /* [:graph:] */
-#define cbit_print 224 /* [:print:] */
-#define cbit_punct 256 /* [:punct:] */
-#define cbit_cntrl 288 /* [:cntrl:] */
-#define cbit_length 320 /* Length of the cbits table */
-
-/* Offsets of the various tables from the base tables pointer, and
-total length. */
-
-#define lcc_offset 0
-#define fcc_offset 256
-#define cbits_offset 512
-#define ctypes_offset (cbits_offset + cbit_length)
-#define tables_length (ctypes_offset + 256)
-
-/* End of internal.h */
diff --git a/pcre/licence b/pcre/licence
deleted file mode 100644
index 34d20db9..00000000
--- a/pcre/licence
+++ /dev/null
@@ -1,46 +0,0 @@
-PCRE LICENCE
-------------
-
-PCRE is a library of functions to support regular expressions whose syntax
-and semantics are as close as possible to those of the Perl 5 language.
-
-Written by: Philip Hazel
-
-University of Cambridge Computing Service,
-Cambridge, England. Phone: +44 1223 334714.
-
-Copyright (c) 1997-2000 University of Cambridge
-
-Permission is granted to anyone to use this software for any purpose on any
-computer system, and to redistribute it freely, subject to the following
-restrictions:
-
-1. This software is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-
-2. The origin of this software must not be misrepresented, either by
- explicit claim or by omission. In practice, this means that if you use
- PCRE in software which you distribute to others, commercially or
- otherwise, you must put a sentence like this
-
- Regular expression support is provided by the PCRE library package,
- which is open source software, written by Philip Hazel, and copyright
- by the University of Cambridge, England.
-
- somewhere reasonably visible in your documentation and in any relevant
- files or online help data or similar. A reference to the ftp site for
- the source, that is, to
-
- ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/
-
- should also be given in the documentation.
-
-3. Altered versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
-
-4. If PCRE is embedded in any software that is released under the GNU
- General Purpose Licence (GPL), then the terms of that licence shall
- supersede any condition above with which it is incompatible.
-
-End
diff --git a/pcre/ltconfig b/pcre/ltconfig
deleted file mode 100644
index a01334f9..00000000
--- a/pcre/ltconfig
+++ /dev/null
@@ -1,3078 +0,0 @@
-#! /bin/sh
-
-# ltconfig - Create a system-specific libtool.
-# Copyright (C) 1996-1999 Free Software Foundation, Inc.
-# Originally by Gordon Matzigkeit , 1996
-#
-# This file is free software; you can redistribute it and/or modify it
-# under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful, but
-# WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-# General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-#
-# As a special exception to the GNU General Public License, if you
-# distribute this file as part of a program that contains a
-# configuration script generated by Autoconf, you may include it under
-# the same distribution terms that you use for the rest of that program.
-
-# A lot of this script is taken from autoconf-2.10.
-
-# Check that we are running under the correct shell.
-SHELL=${CONFIG_SHELL-/bin/sh}
-echo=echo
-if test "X$1" = X--no-reexec; then
- # Discard the --no-reexec flag, and continue.
- shift
-elif test "X$1" = X--fallback-echo; then
- # Avoid inline document here, it may be left over
- :
-elif test "X`($echo '\t') 2>/dev/null`" = 'X\t'; then
- # Yippee, $echo works!
- :
-else
- # Restart under the correct shell.
- exec "$SHELL" "$0" --no-reexec ${1+"$@"}
-fi
-
-if test "X$1" = X--fallback-echo; then
- # used as fallback echo
- shift
- cat </dev/null`}
- case X$UNAME in
- *-DOS) PATH_SEPARATOR=';' ;;
- *) PATH_SEPARATOR=':' ;;
- esac
-fi
-
-# The HP-UX ksh and POSIX shell print the target directory to stdout
-# if CDPATH is set.
-if test "X${CDPATH+set}" = Xset; then CDPATH=:; export CDPATH; fi
-
-if test "X${echo_test_string+set}" != Xset; then
- # find a string as large as possible, as long as the shell can cope with it
- for cmd in 'sed 50q "$0"' 'sed 20q "$0"' 'sed 10q "$0"' 'sed 2q "$0"' 'echo test'; do
- # expected sizes: less than 2Kb, 1Kb, 512 bytes, 16 bytes, ...
- if (echo_test_string="`eval $cmd`") 2>/dev/null &&
- echo_test_string="`eval $cmd`" &&
- (test "X$echo_test_string" = "X$echo_test_string") 2>/dev/null; then
- break
- fi
- done
-fi
-
-if test "X`($echo '\t') 2>/dev/null`" != 'X\t' ||
- test "X`($echo "$echo_test_string") 2>/dev/null`" != X"$echo_test_string"; then
- # The Solaris, AIX, and Digital Unix default echo programs unquote
- # backslashes. This makes it impossible to quote backslashes using
- # echo "$something" | sed 's/\\/\\\\/g'
- #
- # So, first we look for a working echo in the user's PATH.
-
- IFS="${IFS= }"; save_ifs="$IFS"; IFS="${IFS}${PATH_SEPARATOR}"
- for dir in $PATH /usr/ucb; do
- if (test -f $dir/echo || test -f $dir/echo$ac_exeext) &&
- test "X`($dir/echo '\t') 2>/dev/null`" = 'X\t' &&
- test "X`($dir/echo "$echo_test_string") 2>/dev/null`" = X"$echo_test_string"; then
- echo="$dir/echo"
- break
- fi
- done
- IFS="$save_ifs"
-
- if test "X$echo" = Xecho; then
- # We didn't find a better echo, so look for alternatives.
- if test "X`(print -r '\t') 2>/dev/null`" = 'X\t' &&
- test "X`(print -r "$echo_test_string") 2>/dev/null`" = X"$echo_test_string"; then
- # This shell has a builtin print -r that does the trick.
- echo='print -r'
- elif (test -f /bin/ksh || test -f /bin/ksh$ac_exeext) &&
- test "X$CONFIG_SHELL" != X/bin/ksh; then
- # If we have ksh, try running ltconfig again with it.
- ORIGINAL_CONFIG_SHELL="${CONFIG_SHELL-/bin/sh}"
- export ORIGINAL_CONFIG_SHELL
- CONFIG_SHELL=/bin/ksh
- export CONFIG_SHELL
- exec "$CONFIG_SHELL" "$0" --no-reexec ${1+"$@"}
- else
- # Try using printf.
- echo='printf "%s\n"'
- if test "X`($echo '\t') 2>/dev/null`" = 'X\t' &&
- test "X`($echo "$echo_test_string") 2>/dev/null`" = X"$echo_test_string"; then
- # Cool, printf works
- :
- elif test "X`("$ORIGINAL_CONFIG_SHELL" "$0" --fallback-echo '\t') 2>/dev/null`" = 'X\t' &&
- test "X`("$ORIGINAL_CONFIG_SHELL" "$0" --fallback-echo "$echo_test_string") 2>/dev/null`" = X"$echo_test_string"; then
- CONFIG_SHELL="$ORIGINAL_CONFIG_SHELL"
- export CONFIG_SHELL
- SHELL="$CONFIG_SHELL"
- export SHELL
- echo="$CONFIG_SHELL $0 --fallback-echo"
- elif test "X`("$CONFIG_SHELL" "$0" --fallback-echo '\t') 2>/dev/null`" = 'X\t' &&
- test "X`("$CONFIG_SHELL" "$0" --fallback-echo "$echo_test_string") 2>/dev/null`" = X"$echo_test_string"; then
- echo="$CONFIG_SHELL $0 --fallback-echo"
- else
- # maybe with a smaller string...
- prev=:
-
- for cmd in 'echo test' 'sed 2q "$0"' 'sed 10q "$0"' 'sed 20q "$0"' 'sed 50q "$0"'; do
- if (test "X$echo_test_string" = "X`eval $cmd`") 2>/dev/null; then
- break
- fi
- prev="$cmd"
- done
-
- if test "$prev" != 'sed 50q "$0"'; then
- echo_test_string=`eval $prev`
- export echo_test_string
- exec "${ORIGINAL_CONFIG_SHELL}" "$0" ${1+"$@"}
- else
- # Oops. We lost completely, so just stick with echo.
- echo=echo
- fi
- fi
- fi
- fi
-fi
-
-# Sed substitution that helps us do robust quoting. It backslashifies
-# metacharacters that are still active within double-quoted strings.
-Xsed='sed -e s/^X//'
-sed_quote_subst='s/\([\\"\\`$\\\\]\)/\\\1/g'
-
-# Same as above, but do not quote variable references.
-double_quote_subst='s/\([\\"\\`\\\\]\)/\\\1/g'
-
-# Sed substitution to delay expansion of an escaped shell variable in a
-# double_quote_subst'ed string.
-delay_variable_subst='s/\\\\\\\\\\\$/\\\\\\$/g'
-
-# The name of this program.
-progname=`$echo "X$0" | $Xsed -e 's%^.*/%%'`
-
-# Constants:
-PROGRAM=ltconfig
-PACKAGE=libtool
-VERSION=1.3.4
-TIMESTAMP=" (1.385.2.196 1999/12/07 21:47:57)"
-ac_compile='${CC-cc} -c $CFLAGS $CPPFLAGS conftest.$ac_ext 1>&5'
-ac_link='${CC-cc} -o conftest $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS 1>&5'
-rm="rm -f"
-
-help="Try \`$progname --help' for more information."
-
-# Global variables:
-default_ofile=libtool
-can_build_shared=yes
-enable_shared=yes
-# All known linkers require a `.a' archive for static linking (except M$VC,
-# which needs '.lib').
-enable_static=yes
-enable_fast_install=yes
-enable_dlopen=unknown
-enable_win32_dll=no
-ltmain=
-silent=
-srcdir=
-ac_config_guess=
-ac_config_sub=
-host=
-nonopt=
-ofile="$default_ofile"
-verify_host=yes
-with_gcc=no
-with_gnu_ld=no
-need_locks=yes
-ac_ext=c
-objext=o
-libext=a
-exeext=
-cache_file=
-
-old_AR="$AR"
-old_CC="$CC"
-old_CFLAGS="$CFLAGS"
-old_CPPFLAGS="$CPPFLAGS"
-old_LDFLAGS="$LDFLAGS"
-old_LD="$LD"
-old_LN_S="$LN_S"
-old_LIBS="$LIBS"
-old_NM="$NM"
-old_RANLIB="$RANLIB"
-old_DLLTOOL="$DLLTOOL"
-old_OBJDUMP="$OBJDUMP"
-old_AS="$AS"
-
-# Parse the command line options.
-args=
-prev=
-for option
-do
- case "$option" in
- -*=*) optarg=`echo "$option" | sed 's/[-_a-zA-Z0-9]*=//'` ;;
- *) optarg= ;;
- esac
-
- # If the previous option needs an argument, assign it.
- if test -n "$prev"; then
- eval "$prev=\$option"
- prev=
- continue
- fi
-
- case "$option" in
- --help) cat <&2
- echo "$help" 1>&2
- exit 1
- ;;
-
- *)
- if test -z "$ltmain"; then
- ltmain="$option"
- elif test -z "$host"; then
-# This generates an unnecessary warning for sparc-sun-solaris4.1.3_U1
-# if test -n "`echo $option| sed 's/[-a-z0-9.]//g'`"; then
-# echo "$progname: warning \`$option' is not a valid host type" 1>&2
-# fi
- host="$option"
- else
- echo "$progname: too many arguments" 1>&2
- echo "$help" 1>&2
- exit 1
- fi ;;
- esac
-done
-
-if test -z "$ltmain"; then
- echo "$progname: you must specify a LTMAIN file" 1>&2
- echo "$help" 1>&2
- exit 1
-fi
-
-if test ! -f "$ltmain"; then
- echo "$progname: \`$ltmain' does not exist" 1>&2
- echo "$help" 1>&2
- exit 1
-fi
-
-# Quote any args containing shell metacharacters.
-ltconfig_args=
-for arg
-do
- case "$arg" in
- *" "*|*" "*|*[\[\]\~\#\$\^\&\*\(\)\{\}\\\|\;\<\>\?]*)
- ltconfig_args="$ltconfig_args '$arg'" ;;
- *) ltconfig_args="$ltconfig_args $arg" ;;
- esac
-done
-
-# A relevant subset of AC_INIT.
-
-# File descriptor usage:
-# 0 standard input
-# 1 file creation
-# 2 errors and warnings
-# 3 some systems may open it to /dev/tty
-# 4 used on the Kubota Titan
-# 5 compiler messages saved in config.log
-# 6 checking for... messages and results
-if test "$silent" = yes; then
- exec 6>/dev/null
-else
- exec 6>&1
-fi
-exec 5>>./config.log
-
-# NLS nuisances.
-# Only set LANG and LC_ALL to C if already set.
-# These must not be set unconditionally because not all systems understand
-# e.g. LANG=C (notably SCO).
-if test "X${LC_ALL+set}" = Xset; then LC_ALL=C; export LC_ALL; fi
-if test "X${LANG+set}" = Xset; then LANG=C; export LANG; fi
-
-if test -n "$cache_file" && test -r "$cache_file"; then
- echo "loading cache $cache_file within ltconfig"
- . $cache_file
-fi
-
-if (echo "testing\c"; echo 1,2,3) | grep c >/dev/null; then
- # Stardent Vistra SVR4 grep lacks -e, says ghazi@caip.rutgers.edu.
- if (echo -n testing; echo 1,2,3) | sed s/-n/xn/ | grep xn >/dev/null; then
- ac_n= ac_c='
-' ac_t=' '
- else
- ac_n=-n ac_c= ac_t=
- fi
-else
- ac_n= ac_c='\c' ac_t=
-fi
-
-if test -z "$srcdir"; then
- # Assume the source directory is the same one as the path to LTMAIN.
- srcdir=`$echo "X$ltmain" | $Xsed -e 's%/[^/]*$%%'`
- test "$srcdir" = "$ltmain" && srcdir=.
-fi
-
-trap "$rm conftest*; exit 1" 1 2 15
-if test "$verify_host" = yes; then
- # Check for config.guess and config.sub.
- ac_aux_dir=
- for ac_dir in $srcdir $srcdir/.. $srcdir/../..; do
- if test -f $ac_dir/config.guess; then
- ac_aux_dir=$ac_dir
- break
- fi
- done
- if test -z "$ac_aux_dir"; then
- echo "$progname: cannot find config.guess in $srcdir $srcdir/.. $srcdir/../.." 1>&2
- echo "$help" 1>&2
- exit 1
- fi
- ac_config_guess=$ac_aux_dir/config.guess
- ac_config_sub=$ac_aux_dir/config.sub
-
- # Make sure we can run config.sub.
- if $SHELL $ac_config_sub sun4 >/dev/null 2>&1; then :
- else
- echo "$progname: cannot run $ac_config_sub" 1>&2
- echo "$help" 1>&2
- exit 1
- fi
-
- echo $ac_n "checking host system type""... $ac_c" 1>&6
-
- host_alias=$host
- case "$host_alias" in
- "")
- if host_alias=`$SHELL $ac_config_guess`; then :
- else
- echo "$progname: cannot guess host type; you must specify one" 1>&2
- echo "$help" 1>&2
- exit 1
- fi ;;
- esac
- host=`$SHELL $ac_config_sub $host_alias`
- echo "$ac_t$host" 1>&6
-
- # Make sure the host verified.
- test -z "$host" && exit 1
-
-elif test -z "$host"; then
- echo "$progname: you must specify a host type if you use \`--no-verify'" 1>&2
- echo "$help" 1>&2
- exit 1
-else
- host_alias=$host
-fi
-
-# Transform linux* to *-*-linux-gnu*, to support old configure scripts.
-case "$host_os" in
-linux-gnu*) ;;
-linux*) host=`echo $host | sed 's/^\(.*-.*-linux\)\(.*\)$/\1-gnu\2/'`
-esac
-
-host_cpu=`echo $host | sed 's/^\([^-]*\)-\([^-]*\)-\(.*\)$/\1/'`
-host_vendor=`echo $host | sed 's/^\([^-]*\)-\([^-]*\)-\(.*\)$/\2/'`
-host_os=`echo $host | sed 's/^\([^-]*\)-\([^-]*\)-\(.*\)$/\3/'`
-
-case "$host_os" in
-aix3*)
- # AIX sometimes has problems with the GCC collect2 program. For some
- # reason, if we set the COLLECT_NAMES environment variable, the problems
- # vanish in a puff of smoke.
- if test "X${COLLECT_NAMES+set}" != Xset; then
- COLLECT_NAMES=
- export COLLECT_NAMES
- fi
- ;;
-esac
-
-# Determine commands to create old-style static archives.
-old_archive_cmds='$AR cru $oldlib$oldobjs'
-old_postinstall_cmds='chmod 644 $oldlib'
-old_postuninstall_cmds=
-
-# Set a sane default for `AR'.
-test -z "$AR" && AR=ar
-
-# Set a sane default for `OBJDUMP'.
-test -z "$OBJDUMP" && OBJDUMP=objdump
-
-# If RANLIB is not set, then run the test.
-if test "${RANLIB+set}" != "set"; then
- result=no
-
- echo $ac_n "checking for ranlib... $ac_c" 1>&6
- IFS="${IFS= }"; save_ifs="$IFS"; IFS="${IFS}${PATH_SEPARATOR}"
- for dir in $PATH; do
- test -z "$dir" && dir=.
- if test -f $dir/ranlib || test -f $dir/ranlib$ac_exeext; then
- RANLIB="ranlib"
- result="ranlib"
- break
- fi
- done
- IFS="$save_ifs"
-
- echo "$ac_t$result" 1>&6
-fi
-
-if test -n "$RANLIB"; then
- old_archive_cmds="$old_archive_cmds~\$RANLIB \$oldlib"
- old_postinstall_cmds="\$RANLIB \$oldlib~$old_postinstall_cmds"
-fi
-
-# Set sane defaults for `DLLTOOL', `OBJDUMP', and `AS', used on cygwin.
-test -z "$DLLTOOL" && DLLTOOL=dlltool
-test -z "$OBJDUMP" && OBJDUMP=objdump
-test -z "$AS" && AS=as
-
-# Check to see if we are using GCC.
-if test "$with_gcc" != yes || test -z "$CC"; then
- # If CC is not set, then try to find GCC or a usable CC.
- if test -z "$CC"; then
- echo $ac_n "checking for gcc... $ac_c" 1>&6
- IFS="${IFS= }"; save_ifs="$IFS"; IFS="${IFS}${PATH_SEPARATOR}"
- for dir in $PATH; do
- test -z "$dir" && dir=.
- if test -f $dir/gcc || test -f $dir/gcc$ac_exeext; then
- CC="gcc"
- break
- fi
- done
- IFS="$save_ifs"
-
- if test -n "$CC"; then
- echo "$ac_t$CC" 1>&6
- else
- echo "$ac_t"no 1>&6
- fi
- fi
-
- # Not "gcc", so try "cc", rejecting "/usr/ucb/cc".
- if test -z "$CC"; then
- echo $ac_n "checking for cc... $ac_c" 1>&6
- IFS="${IFS= }"; save_ifs="$IFS"; IFS="${IFS}${PATH_SEPARATOR}"
- cc_rejected=no
- for dir in $PATH; do
- test -z "$dir" && dir=.
- if test -f $dir/cc || test -f $dir/cc$ac_exeext; then
- if test "$dir/cc" = "/usr/ucb/cc"; then
- cc_rejected=yes
- continue
- fi
- CC="cc"
- break
- fi
- done
- IFS="$save_ifs"
- if test $cc_rejected = yes; then
- # We found a bogon in the path, so make sure we never use it.
- set dummy $CC
- shift
- if test $# -gt 0; then
- # We chose a different compiler from the bogus one.
- # However, it has the same name, so the bogon will be chosen
- # first if we set CC to just the name; use the full file name.
- shift
- set dummy "$dir/cc" "$@"
- shift
- CC="$@"
- fi
- fi
-
- if test -n "$CC"; then
- echo "$ac_t$CC" 1>&6
- else
- echo "$ac_t"no 1>&6
- fi
-
- if test -z "$CC"; then
- echo "$progname: error: no acceptable cc found in \$PATH" 1>&2
- exit 1
- fi
- fi
-
- # Now see if the compiler is really GCC.
- with_gcc=no
- echo $ac_n "checking whether we are using GNU C... $ac_c" 1>&6
- echo "$progname:581: checking whether we are using GNU C" >&5
-
- $rm conftest.c
- cat > conftest.c <&5; (eval $ac_try) 2>&5; }; } | egrep yes >/dev/null 2>&1; then
- with_gcc=yes
- fi
- $rm conftest.c
- echo "$ac_t$with_gcc" 1>&6
-fi
-
-# Allow CC to be a program name with arguments.
-set dummy $CC
-compiler="$2"
-
-echo $ac_n "checking for object suffix... $ac_c" 1>&6
-$rm conftest*
-echo 'int i = 1;' > conftest.c
-echo "$progname:603: checking for object suffix" >& 5
-if { (eval echo $progname:604: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>conftest.err; }; then
- # Append any warnings to the config.log.
- cat conftest.err 1>&5
-
- for ac_file in conftest.*; do
- case $ac_file in
- *.c) ;;
- *) objext=`echo $ac_file | sed -e s/conftest.//` ;;
- esac
- done
-else
- cat conftest.err 1>&5
- echo "$progname: failed program was:" >&5
- cat conftest.c >&5
-fi
-$rm conftest*
-echo "$ac_t$objext" 1>&6
-
-echo $ac_n "checking for executable suffix... $ac_c" 1>&6
-if eval "test \"`echo '$''{'ac_cv_exeext'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- ac_cv_exeext="no"
- $rm conftest*
- echo 'main () { return 0; }' > conftest.c
- echo "$progname:629: checking for executable suffix" >& 5
- if { (eval echo $progname:630: \"$ac_link\") 1>&5; (eval $ac_link) 2>conftest.err; }; then
- # Append any warnings to the config.log.
- cat conftest.err 1>&5
-
- for ac_file in conftest.*; do
- case $ac_file in
- *.c | *.err | *.$objext ) ;;
- *) ac_cv_exeext=.`echo $ac_file | sed -e s/conftest.//` ;;
- esac
- done
- else
- cat conftest.err 1>&5
- echo "$progname: failed program was:" >&5
- cat conftest.c >&5
- fi
- $rm conftest*
-fi
-if test "X$ac_cv_exeext" = Xno; then
- exeext=""
-else
- exeext="$ac_cv_exeext"
-fi
-echo "$ac_t$ac_cv_exeext" 1>&6
-
-echo $ac_n "checking for $compiler option to produce PIC... $ac_c" 1>&6
-pic_flag=
-special_shlib_compile_flags=
-wl=
-link_static_flag=
-no_builtin_flag=
-
-if test "$with_gcc" = yes; then
- wl='-Wl,'
- link_static_flag='-static'
-
- case "$host_os" in
- beos* | irix5* | irix6* | osf3* | osf4* | osf5*)
- # PIC is the default for these OSes.
- ;;
- aix*)
- # Below there is a dirty hack to force normal static linking with -ldl
- # The problem is because libdl dynamically linked with both libc and
- # libC (AIX C++ library), which obviously doesn't included in libraries
- # list by gcc. This cause undefined symbols with -static flags.
- # This hack allows C programs to be linked with "-static -ldl", but
- # we not sure about C++ programs.
- link_static_flag="$link_static_flag ${wl}-lC"
- ;;
- cygwin* | mingw* | os2*)
- # We can build DLLs from non-PIC.
- ;;
- amigaos*)
- # FIXME: we need at least 68020 code to build shared libraries, but
- # adding the `-m68020' flag to GCC prevents building anything better,
- # like `-m68040'.
- pic_flag='-m68020 -resident32 -malways-restore-a4'
- ;;
- sysv4*MP*)
- if test -d /usr/nec; then
- pic_flag=-Kconform_pic
- fi
- ;;
- *)
- pic_flag='-fPIC'
- ;;
- esac
-else
- # PORTME Check for PIC flags for the system compiler.
- case "$host_os" in
- aix3* | aix4*)
- # All AIX code is PIC.
- link_static_flag='-bnso -bI:/lib/syscalls.exp'
- ;;
-
- hpux9* | hpux10* | hpux11*)
- # Is there a better link_static_flag that works with the bundled CC?
- wl='-Wl,'
- link_static_flag="${wl}-a ${wl}archive"
- pic_flag='+Z'
- ;;
-
- irix5* | irix6*)
- wl='-Wl,'
- link_static_flag='-non_shared'
- # PIC (with -KPIC) is the default.
- ;;
-
- cygwin* | mingw* | os2*)
- # We can build DLLs from non-PIC.
- ;;
-
- osf3* | osf4* | osf5*)
- # All OSF/1 code is PIC.
- wl='-Wl,'
- link_static_flag='-non_shared'
- ;;
-
- sco3.2v5*)
- pic_flag='-Kpic'
- link_static_flag='-dn'
- special_shlib_compile_flags='-belf'
- ;;
-
- solaris*)
- pic_flag='-KPIC'
- link_static_flag='-Bstatic'
- wl='-Wl,'
- ;;
-
- sunos4*)
- pic_flag='-PIC'
- link_static_flag='-Bstatic'
- wl='-Qoption ld '
- ;;
-
- sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*)
- pic_flag='-KPIC'
- link_static_flag='-Bstatic'
- wl='-Wl,'
- ;;
-
- uts4*)
- pic_flag='-pic'
- link_static_flag='-Bstatic'
- ;;
- sysv4*MP*)
- if test -d /usr/nec ;then
- pic_flag='-Kconform_pic'
- link_static_flag='-Bstatic'
- fi
- ;;
- *)
- can_build_shared=no
- ;;
- esac
-fi
-
-if test -n "$pic_flag"; then
- echo "$ac_t$pic_flag" 1>&6
-
- # Check to make sure the pic_flag actually works.
- echo $ac_n "checking if $compiler PIC flag $pic_flag works... $ac_c" 1>&6
- $rm conftest*
- echo "int some_variable = 0;" > conftest.c
- save_CFLAGS="$CFLAGS"
- CFLAGS="$CFLAGS $pic_flag -DPIC"
- echo "$progname:776: checking if $compiler PIC flag $pic_flag works" >&5
- if { (eval echo $progname:777: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>conftest.err; } && test -s conftest.$objext; then
- # Append any warnings to the config.log.
- cat conftest.err 1>&5
-
- case "$host_os" in
- hpux9* | hpux10* | hpux11*)
- # On HP-UX, both CC and GCC only warn that PIC is supported... then they
- # create non-PIC objects. So, if there were any warnings, we assume that
- # PIC is not supported.
- if test -s conftest.err; then
- echo "$ac_t"no 1>&6
- can_build_shared=no
- pic_flag=
- else
- echo "$ac_t"yes 1>&6
- pic_flag=" $pic_flag"
- fi
- ;;
- *)
- echo "$ac_t"yes 1>&6
- pic_flag=" $pic_flag"
- ;;
- esac
- else
- # Append any errors to the config.log.
- cat conftest.err 1>&5
- can_build_shared=no
- pic_flag=
- echo "$ac_t"no 1>&6
- fi
- CFLAGS="$save_CFLAGS"
- $rm conftest*
-else
- echo "$ac_t"none 1>&6
-fi
-
-# Check to see if options -o and -c are simultaneously supported by compiler
-echo $ac_n "checking if $compiler supports -c -o file.o... $ac_c" 1>&6
-$rm -r conftest 2>/dev/null
-mkdir conftest
-cd conftest
-$rm conftest*
-echo "int some_variable = 0;" > conftest.c
-mkdir out
-# According to Tom Tromey, Ian Lance Taylor reported there are C compilers
-# that will create temporary files in the current directory regardless of
-# the output directory. Thus, making CWD read-only will cause this test
-# to fail, enabling locking or at least warning the user not to do parallel
-# builds.
-chmod -w .
-save_CFLAGS="$CFLAGS"
-CFLAGS="$CFLAGS -o out/conftest2.o"
-echo "$progname:829: checking if $compiler supports -c -o file.o" >&5
-if { (eval echo $progname:830: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>out/conftest.err; } && test -s out/conftest2.o; then
-
- # The compiler can only warn and ignore the option if not recognized
- # So say no if there are warnings
- if test -s out/conftest.err; then
- echo "$ac_t"no 1>&6
- compiler_c_o=no
- else
- echo "$ac_t"yes 1>&6
- compiler_c_o=yes
- fi
-else
- # Append any errors to the config.log.
- cat out/conftest.err 1>&5
- compiler_c_o=no
- echo "$ac_t"no 1>&6
-fi
-CFLAGS="$save_CFLAGS"
-chmod u+w .
-$rm conftest* out/*
-rmdir out
-cd ..
-rmdir conftest
-$rm -r conftest 2>/dev/null
-
-if test x"$compiler_c_o" = x"yes"; then
- # Check to see if we can write to a .lo
- echo $ac_n "checking if $compiler supports -c -o file.lo... $ac_c" 1>&6
- $rm conftest*
- echo "int some_variable = 0;" > conftest.c
- save_CFLAGS="$CFLAGS"
- CFLAGS="$CFLAGS -c -o conftest.lo"
- echo "$progname:862: checking if $compiler supports -c -o file.lo" >&5
-if { (eval echo $progname:863: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>conftest.err; } && test -s conftest.lo; then
-
- # The compiler can only warn and ignore the option if not recognized
- # So say no if there are warnings
- if test -s conftest.err; then
- echo "$ac_t"no 1>&6
- compiler_o_lo=no
- else
- echo "$ac_t"yes 1>&6
- compiler_o_lo=yes
- fi
- else
- # Append any errors to the config.log.
- cat conftest.err 1>&5
- compiler_o_lo=no
- echo "$ac_t"no 1>&6
- fi
- CFLAGS="$save_CFLAGS"
- $rm conftest*
-else
- compiler_o_lo=no
-fi
-
-# Check to see if we can do hard links to lock some files if needed
-hard_links="nottested"
-if test "$compiler_c_o" = no && test "$need_locks" != no; then
- # do not overwrite the value of need_locks provided by the user
- echo $ac_n "checking if we can lock with hard links... $ac_c" 1>&6
- hard_links=yes
- $rm conftest*
- ln conftest.a conftest.b 2>/dev/null && hard_links=no
- touch conftest.a
- ln conftest.a conftest.b 2>&5 || hard_links=no
- ln conftest.a conftest.b 2>/dev/null && hard_links=no
- echo "$ac_t$hard_links" 1>&6
- $rm conftest*
- if test "$hard_links" = no; then
- echo "*** WARNING: \`$CC' does not support \`-c -o', so \`make -j' may be unsafe" >&2
- need_locks=warn
- fi
-else
- need_locks=no
-fi
-
-if test "$with_gcc" = yes; then
- # Check to see if options -fno-rtti -fno-exceptions are supported by compiler
- echo $ac_n "checking if $compiler supports -fno-rtti -fno-exceptions ... $ac_c" 1>&6
- $rm conftest*
- echo "int some_variable = 0;" > conftest.c
- save_CFLAGS="$CFLAGS"
- CFLAGS="$CFLAGS -fno-rtti -fno-exceptions -c conftest.c"
- echo "$progname:914: checking if $compiler supports -fno-rtti -fno-exceptions" >&5
- if { (eval echo $progname:915: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>conftest.err; } && test -s conftest.o; then
-
- # The compiler can only warn and ignore the option if not recognized
- # So say no if there are warnings
- if test -s conftest.err; then
- echo "$ac_t"no 1>&6
- compiler_rtti_exceptions=no
- else
- echo "$ac_t"yes 1>&6
- compiler_rtti_exceptions=yes
- fi
- else
- # Append any errors to the config.log.
- cat conftest.err 1>&5
- compiler_rtti_exceptions=no
- echo "$ac_t"no 1>&6
- fi
- CFLAGS="$save_CFLAGS"
- $rm conftest*
-
- if test "$compiler_rtti_exceptions" = "yes"; then
- no_builtin_flag=' -fno-builtin -fno-rtti -fno-exceptions'
- else
- no_builtin_flag=' -fno-builtin'
- fi
-
-fi
-
-# Check for any special shared library compilation flags.
-if test -n "$special_shlib_compile_flags"; then
- echo "$progname: warning: \`$CC' requires \`$special_shlib_compile_flags' to build shared libraries" 1>&2
- if echo "$old_CC $old_CFLAGS " | egrep -e "[ ]$special_shlib_compile_flags[ ]" >/dev/null; then :
- else
- echo "$progname: add \`$special_shlib_compile_flags' to the CC or CFLAGS env variable and reconfigure" 1>&2
- can_build_shared=no
- fi
-fi
-
-echo $ac_n "checking if $compiler static flag $link_static_flag works... $ac_c" 1>&6
-$rm conftest*
-echo 'main(){return(0);}' > conftest.c
-save_LDFLAGS="$LDFLAGS"
-LDFLAGS="$LDFLAGS $link_static_flag"
-echo "$progname:958: checking if $compiler static flag $link_static_flag works" >&5
-if { (eval echo $progname:959: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
- echo "$ac_t$link_static_flag" 1>&6
-else
- echo "$ac_t"none 1>&6
- link_static_flag=
-fi
-LDFLAGS="$save_LDFLAGS"
-$rm conftest*
-
-if test -z "$LN_S"; then
- # Check to see if we can use ln -s, or we need hard links.
- echo $ac_n "checking whether ln -s works... $ac_c" 1>&6
- $rm conftest.dat
- if ln -s X conftest.dat 2>/dev/null; then
- $rm conftest.dat
- LN_S="ln -s"
- else
- LN_S=ln
- fi
- if test "$LN_S" = "ln -s"; then
- echo "$ac_t"yes 1>&6
- else
- echo "$ac_t"no 1>&6
- fi
-fi
-
-# Make sure LD is an absolute path.
-if test -z "$LD"; then
- ac_prog=ld
- if test "$with_gcc" = yes; then
- # Check if gcc -print-prog-name=ld gives a path.
- echo $ac_n "checking for ld used by GCC... $ac_c" 1>&6
- echo "$progname:991: checking for ld used by GCC" >&5
- ac_prog=`($CC -print-prog-name=ld) 2>&5`
- case "$ac_prog" in
- # Accept absolute paths.
- [\\/]* | [A-Za-z]:[\\/]*)
- re_direlt='/[^/][^/]*/\.\./'
- # Canonicalize the path of ld
- ac_prog=`echo $ac_prog| sed 's%\\\\%/%g'`
- while echo $ac_prog | grep "$re_direlt" > /dev/null 2>&1; do
- ac_prog=`echo $ac_prog| sed "s%$re_direlt%/%"`
- done
- test -z "$LD" && LD="$ac_prog"
- ;;
- "")
- # If it fails, then pretend we are not using GCC.
- ac_prog=ld
- ;;
- *)
- # If it is relative, then search for the first ld in PATH.
- with_gnu_ld=unknown
- ;;
- esac
- elif test "$with_gnu_ld" = yes; then
- echo $ac_n "checking for GNU ld... $ac_c" 1>&6
- echo "$progname:1015: checking for GNU ld" >&5
- else
- echo $ac_n "checking for non-GNU ld""... $ac_c" 1>&6
- echo "$progname:1018: checking for non-GNU ld" >&5
- fi
-
- if test -z "$LD"; then
- IFS="${IFS= }"; ac_save_ifs="$IFS"; IFS="${IFS}${PATH_SEPARATOR}"
- for ac_dir in $PATH; do
- test -z "$ac_dir" && ac_dir=.
- if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then
- LD="$ac_dir/$ac_prog"
- # Check to see if the program is GNU ld. I'd rather use --version,
- # but apparently some GNU ld's only accept -v.
- # Break only if it was the GNU/non-GNU ld that we prefer.
- if "$LD" -v 2>&1 < /dev/null | egrep '(GNU|with BFD)' > /dev/null; then
- test "$with_gnu_ld" != no && break
- else
- test "$with_gnu_ld" != yes && break
- fi
- fi
- done
- IFS="$ac_save_ifs"
- fi
-
- if test -n "$LD"; then
- echo "$ac_t$LD" 1>&6
- else
- echo "$ac_t"no 1>&6
- fi
-
- if test -z "$LD"; then
- echo "$progname: error: no acceptable ld found in \$PATH" 1>&2
- exit 1
- fi
-fi
-
-# Check to see if it really is or is not GNU ld.
-echo $ac_n "checking if the linker ($LD) is GNU ld... $ac_c" 1>&6
-# I'd rather use --version here, but apparently some GNU ld's only accept -v.
-if $LD -v 2>&1 &5; then
- with_gnu_ld=yes
-else
- with_gnu_ld=no
-fi
-echo "$ac_t$with_gnu_ld" 1>&6
-
-# See if the linker supports building shared libraries.
-echo $ac_n "checking whether the linker ($LD) supports shared libraries... $ac_c" 1>&6
-
-allow_undefined_flag=
-no_undefined_flag=
-need_lib_prefix=unknown
-need_version=unknown
-# when you set need_version to no, make sure it does not cause -set_version
-# flags to be left without arguments
-archive_cmds=
-archive_expsym_cmds=
-old_archive_from_new_cmds=
-export_dynamic_flag_spec=
-whole_archive_flag_spec=
-thread_safe_flag_spec=
-hardcode_libdir_flag_spec=
-hardcode_libdir_separator=
-hardcode_direct=no
-hardcode_minus_L=no
-hardcode_shlibpath_var=unsupported
-runpath_var=
-always_export_symbols=no
-export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | sed '\''s/.* //'\'' | sort | uniq > $export_symbols'
-# include_expsyms should be a list of space-separated symbols to be *always*
-# included in the symbol list
-include_expsyms=
-# exclude_expsyms can be an egrep regular expression of symbols to exclude
-# it will be wrapped by ` (' and `)$', so one must not match beginning or
-# end of line. Example: `a|bc|.*d.*' will exclude the symbols `a' and `bc',
-# as well as any symbol that contains `d'.
-exclude_expsyms="_GLOBAL_OFFSET_TABLE_"
-# Although _GLOBAL_OFFSET_TABLE_ is a valid symbol C name, most a.out
-# platforms (ab)use it in PIC code, but their linkers get confused if
-# the symbol is explicitly referenced. Since portable code cannot
-# rely on this symbol name, it's probably fine to never include it in
-# preloaded symbol tables.
-
-case "$host_os" in
-cygwin* | mingw*)
- # FIXME: the MSVC++ port hasn't been tested in a loooong time
- # When not using gcc, we currently assume that we are using
- # Microsoft Visual C++.
- if test "$with_gcc" != yes; then
- with_gnu_ld=no
- fi
- ;;
-
-esac
-
-ld_shlibs=yes
-if test "$with_gnu_ld" = yes; then
- # If archive_cmds runs LD, not CC, wlarc should be empty
- wlarc='${wl}'
-
- # See if GNU ld supports shared libraries.
- case "$host_os" in
- aix3* | aix4*)
- # On AIX, the GNU linker is very broken
- ld_shlibs=no
- cat <&2
-
-*** Warning: the GNU linker, at least up to release 2.9.1, is reported
-*** to be unable to reliably create shared libraries on AIX.
-*** Therefore, libtool is disabling shared libraries support. If you
-*** really care for shared libraries, you may want to modify your PATH
-*** so that a non-GNU linker is found, and then restart.
-
-EOF
- ;;
-
- amigaos*)
- archive_cmds='$rm $objdir/a2ixlibrary.data~$echo "#define NAME $libname" > $objdir/a2ixlibrary.data~$echo "#define LIBRARY_ID 1" >> $objdir/a2ixlibrary.data~$echo "#define VERSION $major" >> $objdir/a2ixlibrary.data~$echo "#define REVISION $revision" >> $objdir/a2ixlibrary.data~$AR cru $lib $libobjs~$RANLIB $lib~(cd $objdir && a2ixlibrary -32)'
- hardcode_libdir_flag_spec='-L$libdir'
- hardcode_minus_L=yes
-
- # Samuel A. Falvo II reports
- # that the semantics of dynamic libraries on AmigaOS, at least up
- # to version 4, is to share data among multiple programs linked
- # with the same dynamic library. Since this doesn't match the
- # behavior of shared libraries on other platforms, we can use
- # them.
- ld_shlibs=no
- ;;
-
- beos*)
- if $LD --help 2>&1 | egrep ': supported targets:.* elf' > /dev/null; then
- allow_undefined_flag=unsupported
- # Joseph Beckenbach says some releases of gcc
- # support --undefined. This deserves some investigation. FIXME
- archive_cmds='$CC -nostart $libobjs $deplibs $linkopts ${wl}-soname $wl$soname -o $lib'
- else
- ld_shlibs=no
- fi
- ;;
-
- cygwin* | mingw*)
- # hardcode_libdir_flag_spec is actually meaningless, as there is
- # no search path for DLLs.
- hardcode_libdir_flag_spec='-L$libdir'
- allow_undefined_flag=unsupported
- always_export_symbols=yes
-
- # Extract the symbol export list from an `--export-all' def file,
- # then regenerate the def file from the symbol export list, so that
- # the compiled dll only exports the symbol export list.
- export_symbols_cmds='test -f $objdir/$soname-ltdll.c || sed -e "/^# \/\* ltdll\.c starts here \*\//,/^# \/\* ltdll.c ends here \*\// { s/^# //; p; }" -e d < $0 > $objdir/$soname-ltdll.c~
- test -f $objdir/$soname-ltdll.$objext || (cd $objdir && $CC -c $soname-ltdll.c)~
- $DLLTOOL --export-all --exclude-symbols DllMain@12,_cygwin_dll_entry@12,_cygwin_noncygwin_dll_entry@12 --output-def $objdir/$soname-def $objdir/$soname-ltdll.$objext $libobjs $convenience~
- sed -e "1,/EXPORTS/d" -e "s/ @ [0-9]* ; *//" < $objdir/$soname-def > $export_symbols'
-
- archive_expsym_cmds='echo EXPORTS > $objdir/$soname-def~
- _lt_hint=1;
- for symbol in `cat $export_symbols`; do
- echo " \$symbol @ \$_lt_hint ; " >> $objdir/$soname-def;
- _lt_hint=`expr 1 + \$_lt_hint`;
- done~
- test -f $objdir/$soname-ltdll.c || sed -e "/^# \/\* ltdll\.c starts here \*\//,/^# \/\* ltdll.c ends here \*\// { s/^# //; p; }" -e d < $0 > $objdir/$soname-ltdll.c~
- test -f $objdir/$soname-ltdll.$objext || (cd $objdir && $CC -c $soname-ltdll.c)~
- $CC -Wl,--base-file,$objdir/$soname-base -Wl,--dll -nostartfiles -Wl,-e,__cygwin_dll_entry@12 -o $lib $objdir/$soname-ltdll.$objext $libobjs $deplibs $linkopts~
- $DLLTOOL --as=$AS --dllname $soname --exclude-symbols DllMain@12,_cygwin_dll_entry@12,_cygwin_noncygwin_dll_entry@12 --def $objdir/$soname-def --base-file $objdir/$soname-base --output-exp $objdir/$soname-exp~
- $CC -Wl,--base-file,$objdir/$soname-base $objdir/$soname-exp -Wl,--dll -nostartfiles -Wl,-e,__cygwin_dll_entry@12 -o $lib $objdir/$soname-ltdll.$objext $libobjs $deplibs $linkopts~
- $DLLTOOL --as=$AS --dllname $soname --exclude-symbols DllMain@12,_cygwin_dll_entry@12,_cygwin_noncygwin_dll_entry@12 --def $objdir/$soname-def --base-file $objdir/$soname-base --output-exp $objdir/$soname-exp~
- $CC $objdir/$soname-exp -Wl,--dll -nostartfiles -Wl,-e,__cygwin_dll_entry@12 -o $lib $objdir/$soname-ltdll.$objext $libobjs $deplibs $linkopts'
-
- old_archive_from_new_cmds='$DLLTOOL --as=$AS --dllname $soname --def $objdir/$soname-def --output-lib $objdir/$libname.a'
- ;;
-
- netbsd*)
- if echo __ELF__ | $CC -E - | grep __ELF__ >/dev/null; then
- archive_cmds='$CC -shared $libobjs $deplibs $linkopts ${wl}-soname $wl$soname -o $lib'
- archive_expsym_cmds='$CC -shared $libobjs $deplibs $linkopts ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib'
- else
- archive_cmds='$LD -Bshareable $libobjs $deplibs $linkopts -o $lib'
- # can we support soname and/or expsyms with a.out? -oliva
- fi
- ;;
-
- solaris* | sysv5*)
- if $LD -v 2>&1 | egrep 'BFD 2\.8' > /dev/null; then
- ld_shlibs=no
- cat <&2
-
-*** Warning: The releases 2.8.* of the GNU linker cannot reliably
-*** create shared libraries on Solaris systems. Therefore, libtool
-*** is disabling shared libraries support. We urge you to upgrade GNU
-*** binutils to release 2.9.1 or newer. Another option is to modify
-*** your PATH or compiler configuration so that the native linker is
-*** used, and then restart.
-
-EOF
- elif $LD --help 2>&1 | egrep ': supported targets:.* elf' > /dev/null; then
- archive_cmds='$CC -shared $libobjs $deplibs $linkopts ${wl}-soname $wl$soname -o $lib'
- archive_expsym_cmds='$CC -shared $libobjs $deplibs $linkopts ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib'
- else
- ld_shlibs=no
- fi
- ;;
-
- sunos4*)
- archive_cmds='$LD -assert pure-text -Bshareable -o $lib $libobjs $deplibs $linkopts'
- wlarc=
- hardcode_direct=yes
- hardcode_shlibpath_var=no
- ;;
-
- *)
- if $LD --help 2>&1 | egrep ': supported targets:.* elf' > /dev/null; then
- archive_cmds='$CC -shared $libobjs $deplibs $linkopts ${wl}-soname $wl$soname -o $lib'
- archive_expsym_cmds='$CC -shared $libobjs $deplibs $linkopts ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib'
- else
- ld_shlibs=no
- fi
- ;;
- esac
-
- if test "$ld_shlibs" = yes; then
- runpath_var=LD_RUN_PATH
- hardcode_libdir_flag_spec='${wl}--rpath ${wl}$libdir'
- export_dynamic_flag_spec='${wl}--export-dynamic'
- case $host_os in
- cygwin* | mingw*)
- # dlltool doesn't understand --whole-archive et. al.
- whole_archive_flag_spec=
- ;;
- *)
- # ancient GNU ld didn't support --whole-archive et. al.
- if $LD --help 2>&1 | egrep 'no-whole-archive' > /dev/null; then
- whole_archive_flag_spec="$wlarc"'--whole-archive$convenience '"$wlarc"'--no-whole-archive'
- else
- whole_archive_flag_spec=
- fi
- ;;
- esac
- fi
-else
- # PORTME fill in a description of your system's linker (not GNU ld)
- case "$host_os" in
- aix3*)
- allow_undefined_flag=unsupported
- always_export_symbols=yes
- archive_expsym_cmds='$LD -o $objdir/$soname $libobjs $deplibs $linkopts -bE:$export_symbols -T512 -H512 -bM:SRE~$AR cru $lib $objdir/$soname'
- # Note: this linker hardcodes the directories in LIBPATH if there
- # are no directories specified by -L.
- hardcode_minus_L=yes
- if test "$with_gcc" = yes && test -z "$link_static_flag"; then
- # Neither direct hardcoding nor static linking is supported with a
- # broken collect2.
- hardcode_direct=unsupported
- fi
- ;;
-
- aix4*)
- hardcode_libdir_flag_spec='${wl}-b ${wl}nolibpath ${wl}-b ${wl}libpath:$libdir:/usr/lib:/lib'
- hardcode_libdir_separator=':'
- if test "$with_gcc" = yes; then
- collect2name=`${CC} -print-prog-name=collect2`
- if test -f "$collect2name" && \
- strings "$collect2name" | grep resolve_lib_name >/dev/null
- then
- # We have reworked collect2
- hardcode_direct=yes
- else
- # We have old collect2
- hardcode_direct=unsupported
- # It fails to find uninstalled libraries when the uninstalled
- # path is not listed in the libpath. Setting hardcode_minus_L
- # to unsupported forces relinking
- hardcode_minus_L=yes
- hardcode_libdir_flag_spec='-L$libdir'
- hardcode_libdir_separator=
- fi
- shared_flag='-shared'
- else
- shared_flag='${wl}-bM:SRE'
- hardcode_direct=yes
- fi
- allow_undefined_flag=' ${wl}-berok'
- archive_cmds="\$CC $shared_flag"' -o $objdir/$soname $libobjs $deplibs $linkopts ${wl}-bexpall ${wl}-bnoentry${allow_undefined_flag}'
- archive_expsym_cmds="\$CC $shared_flag"' -o $objdir/$soname $libobjs $deplibs $linkopts ${wl}-bE:$export_symbols ${wl}-bnoentry${allow_undefined_flag}'
- case "$host_os" in aix4.[01]|aix4.[01].*)
- # According to Greg Wooledge, -bexpall is only supported from AIX 4.2 on
- always_export_symbols=yes ;;
- esac
- ;;
-
- amigaos*)
- archive_cmds='$rm $objdir/a2ixlibrary.data~$echo "#define NAME $libname" > $objdir/a2ixlibrary.data~$echo "#define LIBRARY_ID 1" >> $objdir/a2ixlibrary.data~$echo "#define VERSION $major" >> $objdir/a2ixlibrary.data~$echo "#define REVISION $revision" >> $objdir/a2ixlibrary.data~$AR cru $lib $libobjs~$RANLIB $lib~(cd $objdir && a2ixlibrary -32)'
- hardcode_libdir_flag_spec='-L$libdir'
- hardcode_minus_L=yes
- # see comment about different semantics on the GNU ld section
- ld_shlibs=no
- ;;
-
- cygwin* | mingw*)
- # When not using gcc, we currently assume that we are using
- # Microsoft Visual C++.
- # hardcode_libdir_flag_spec is actually meaningless, as there is
- # no search path for DLLs.
- hardcode_libdir_flag_spec=' '
- allow_undefined_flag=unsupported
- # Tell ltmain to make .lib files, not .a files.
- libext=lib
- # FIXME: Setting linknames here is a bad hack.
- archive_cmds='$CC -o $lib $libobjs $linkopts `echo "$deplibs" | sed -e '\''s/ -lc$//'\''` -link -dll~linknames='
- # The linker will automatically build a .lib file if we build a DLL.
- old_archive_from_new_cmds='true'
- # FIXME: Should let the user specify the lib program.
- old_archive_cmds='lib /OUT:$oldlib$oldobjs'
- fix_srcfile_path='`cygpath -w $srcfile`'
- ;;
-
- freebsd1*)
- ld_shlibs=no
- ;;
-
- # FreeBSD 2.2.[012] allows us to include c++rt0.o to get C++ constructor
- # support. Future versions do this automatically, but an explicit c++rt0.o
- # does not break anything, and helps significantly (at the cost of a little
- # extra space).
- freebsd2.2*)
- archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linkopts /usr/lib/c++rt0.o'
- hardcode_libdir_flag_spec='-R$libdir'
- hardcode_direct=yes
- hardcode_shlibpath_var=no
- ;;
-
- # Unfortunately, older versions of FreeBSD 2 do not have this feature.
- freebsd2*)
- archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linkopts'
- hardcode_direct=yes
- hardcode_minus_L=yes
- hardcode_shlibpath_var=no
- ;;
-
- # FreeBSD 3 and greater uses gcc -shared to do shared libraries.
- freebsd*)
- archive_cmds='$CC -shared -o $lib $libobjs $deplibs $linkopts'
- hardcode_libdir_flag_spec='-R$libdir'
- hardcode_direct=yes
- hardcode_shlibpath_var=no
- ;;
-
- hpux9* | hpux10* | hpux11*)
- case "$host_os" in
- hpux9*) archive_cmds='$rm $objdir/$soname~$LD -b +b $install_libdir -o $objdir/$soname $libobjs $deplibs $linkopts~test $objdir/$soname = $lib || mv $objdir/$soname $lib' ;;
- *) archive_cmds='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linkopts' ;;
- esac
- hardcode_libdir_flag_spec='${wl}+b ${wl}$libdir'
- hardcode_libdir_separator=:
- hardcode_direct=yes
- hardcode_minus_L=yes # Not in the search PATH, but as the default
- # location of the library.
- export_dynamic_flag_spec='${wl}-E'
- ;;
-
- irix5* | irix6*)
- if test "$with_gcc" = yes; then
- archive_cmds='$CC -shared $libobjs $deplibs $linkopts ${wl}-soname ${wl}$soname `test -n "$verstring" && echo ${wl}-set_version ${wl}$verstring` ${wl}-update_registry ${wl}${objdir}/so_locations -o $lib'
- else
- archive_cmds='$LD -shared $libobjs $deplibs $linkopts -soname $soname `test -n "$verstring" && echo -set_version $verstring` -update_registry ${objdir}/so_locations -o $lib'
- fi
- hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir'
- hardcode_libdir_separator=:
- ;;
-
- netbsd*)
- if echo __ELF__ | $CC -E - | grep __ELF__ >/dev/null; then
- archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linkopts' # a.out
- else
- archive_cmds='$LD -shared -o $lib $libobjs $deplibs $linkopts' # ELF
- fi
- hardcode_libdir_flag_spec='${wl}-R$libdir'
- hardcode_direct=yes
- hardcode_shlibpath_var=no
- ;;
-
- openbsd*)
- archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linkopts'
- hardcode_libdir_flag_spec='-R$libdir'
- hardcode_direct=yes
- hardcode_shlibpath_var=no
- ;;
-
- os2*)
- hardcode_libdir_flag_spec='-L$libdir'
- hardcode_minus_L=yes
- allow_undefined_flag=unsupported
- archive_cmds='$echo "LIBRARY $libname INITINSTANCE" > $objdir/$libname.def~$echo "DESCRIPTION \"$libname\"" >> $objdir/$libname.def~$echo DATA >> $objdir/$libname.def~$echo " SINGLE NONSHARED" >> $objdir/$libname.def~$echo EXPORTS >> $objdir/$libname.def~emxexp $libobjs >> $objdir/$libname.def~$CC -Zdll -Zcrtdll -o $lib $libobjs $deplibs $linkopts $objdir/$libname.def'
- old_archive_from_new_cmds='emximp -o $objdir/$libname.a $objdir/$libname.def'
- ;;
-
- osf3*)
- if test "$with_gcc" = yes; then
- allow_undefined_flag=' ${wl}-expect_unresolved ${wl}\*'
- archive_cmds='$CC -shared${allow_undefined_flag} $libobjs $deplibs $linkopts ${wl}-soname ${wl}$soname `test -n "$verstring" && echo ${wl}-set_version ${wl}$verstring` ${wl}-update_registry ${wl}${objdir}/so_locations -o $lib'
- else
- allow_undefined_flag=' -expect_unresolved \*'
- archive_cmds='$LD -shared${allow_undefined_flag} $libobjs $deplibs $linkopts -soname $soname `test -n "$verstring" && echo -set_version $verstring` -update_registry ${objdir}/so_locations -o $lib'
- fi
- hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir'
- hardcode_libdir_separator=:
- ;;
-
- osf4* | osf5*) # As osf3* with the addition of the -msym flag
- if test "$with_gcc" = yes; then
- allow_undefined_flag=' ${wl}-expect_unresolved ${wl}\*'
- archive_cmds='$CC -shared${allow_undefined_flag} $libobjs $deplibs $linkopts ${wl}-msym ${wl}-soname ${wl}$soname `test -n "$verstring" && echo ${wl}-set_version ${wl}$verstring` ${wl}-update_registry ${wl}${objdir}/so_locations -o $lib'
- else
- allow_undefined_flag=' -expect_unresolved \*'
- archive_cmds='$LD -shared${allow_undefined_flag} $libobjs $deplibs $linkopts -msym -soname $soname `test -n "$verstring" && echo -set_version $verstring` -update_registry ${objdir}/so_locations -o $lib'
- fi
- hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir'
- hardcode_libdir_separator=:
- ;;
-
- sco3.2v5*)
- archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linkopts'
- hardcode_shlibpath_var=no
- runpath_var=LD_RUN_PATH
- hardcode_runpath_var=yes
- ;;
-
- solaris*)
- no_undefined_flag=' -z text'
- # $CC -shared without GNU ld will not create a library from C++
- # object files and a static libstdc++, better avoid it by now
- archive_cmds='$LD -G${allow_undefined_flag} -h $soname -o $lib $libobjs $deplibs $linkopts'
- archive_expsym_cmds='$echo "{ global:" > $lib.exp~cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $lib.exp~$echo "local: *; };" >> $lib.exp~
- $LD -G${allow_undefined_flag} -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linkopts~$rm $lib.exp'
- hardcode_libdir_flag_spec='-R$libdir'
- hardcode_shlibpath_var=no
- case "$host_os" in
- solaris2.[0-5] | solaris2.[0-5].*) ;;
- *) # Supported since Solaris 2.6 (maybe 2.5.1?)
- whole_archive_flag_spec='-z allextract$convenience -z defaultextract' ;;
- esac
- ;;
-
- sunos4*)
- archive_cmds='$LD -assert pure-text -Bstatic -o $lib $libobjs $deplibs $linkopts'
- hardcode_libdir_flag_spec='-L$libdir'
- hardcode_direct=yes
- hardcode_minus_L=yes
- hardcode_shlibpath_var=no
- ;;
-
- sysv4)
- archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linkopts'
- runpath_var='LD_RUN_PATH'
- hardcode_shlibpath_var=no
- hardcode_direct=no #Motorola manual says yes, but my tests say they lie
- ;;
-
- sysv4.3*)
- archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linkopts'
- hardcode_shlibpath_var=no
- export_dynamic_flag_spec='-Bexport'
- ;;
-
- sysv5*)
- no_undefined_flag=' -z text'
- # $CC -shared without GNU ld will not create a library from C++
- # object files and a static libstdc++, better avoid it by now
- archive_cmds='$LD -G${allow_undefined_flag} -h $soname -o $lib $libobjs $deplibs $linkopts'
- archive_expsym_cmds='$echo "{ global:" > $lib.exp~cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $lib.exp~$echo "local: *; };" >> $lib.exp~
- $LD -G${allow_undefined_flag} -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linkopts~$rm $lib.exp'
- hardcode_libdir_flag_spec=
- hardcode_shlibpath_var=no
- runpath_var='LD_RUN_PATH'
- ;;
-
- uts4*)
- archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linkopts'
- hardcode_libdir_flag_spec='-L$libdir'
- hardcode_shlibpath_var=no
- ;;
-
- dgux*)
- archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linkopts'
- hardcode_libdir_flag_spec='-L$libdir'
- hardcode_shlibpath_var=no
- ;;
-
- sysv4*MP*)
- if test -d /usr/nec; then
- archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linkopts'
- hardcode_shlibpath_var=no
- runpath_var=LD_RUN_PATH
- hardcode_runpath_var=yes
- ld_shlibs=yes
- fi
- ;;
-
- sysv4.2uw2*)
- archive_cmds='$LD -G -o $lib $libobjs $deplibs $linkopts'
- hardcode_direct=yes
- hardcode_minus_L=no
- hardcode_shlibpath_var=no
- hardcode_runpath_var=yes
- runpath_var=LD_RUN_PATH
- ;;
-
- unixware7*)
- archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linkopts'
- runpath_var='LD_RUN_PATH'
- hardcode_shlibpath_var=no
- ;;
-
- *)
- ld_shlibs=no
- ;;
- esac
-fi
-echo "$ac_t$ld_shlibs" 1>&6
-test "$ld_shlibs" = no && can_build_shared=no
-
-if test -z "$NM"; then
- echo $ac_n "checking for BSD-compatible nm... $ac_c" 1>&6
- case "$NM" in
- [\\/]* | [A-Za-z]:[\\/]*) ;; # Let the user override the test with a path.
- *)
- IFS="${IFS= }"; ac_save_ifs="$IFS"; IFS="${IFS}${PATH_SEPARATOR}"
- for ac_dir in $PATH /usr/ucb /usr/ccs/bin /bin; do
- test -z "$ac_dir" && ac_dir=.
- if test -f $ac_dir/nm || test -f $ac_dir/nm$ac_exeext; then
- # Check to see if the nm accepts a BSD-compat flag.
- # Adding the `sed 1q' prevents false positives on HP-UX, which says:
- # nm: unknown option "B" ignored
- if ($ac_dir/nm -B /dev/null 2>&1 | sed '1q'; exit 0) | egrep /dev/null >/dev/null; then
- NM="$ac_dir/nm -B"
- break
- elif ($ac_dir/nm -p /dev/null 2>&1 | sed '1q'; exit 0) | egrep /dev/null >/dev/null; then
- NM="$ac_dir/nm -p"
- break
- else
- NM=${NM="$ac_dir/nm"} # keep the first match, but
- continue # so that we can try to find one that supports BSD flags
- fi
- fi
- done
- IFS="$ac_save_ifs"
- test -z "$NM" && NM=nm
- ;;
- esac
- echo "$ac_t$NM" 1>&6
-fi
-
-# Check for command to grab the raw symbol name followed by C symbol from nm.
-echo $ac_n "checking command to parse $NM output... $ac_c" 1>&6
-
-# These are sane defaults that work on at least a few old systems.
-# [They come from Ultrix. What could be older than Ultrix?!! ;)]
-
-# Character class describing NM global symbol codes.
-symcode='[BCDEGRST]'
-
-# Regexp to match symbols that can be accessed directly from C.
-sympat='\([_A-Za-z][_A-Za-z0-9]*\)'
-
-# Transform the above into a raw symbol and a C symbol.
-symxfrm='\1 \2\3 \3'
-
-# Transform an extracted symbol line into a proper C declaration
-global_symbol_to_cdecl="sed -n -e 's/^. .* \(.*\)$/extern char \1;/p'"
-
-# Define system-specific variables.
-case "$host_os" in
-aix*)
- symcode='[BCDT]'
- ;;
-cygwin* | mingw*)
- symcode='[ABCDGISTW]'
- ;;
-hpux*) # Its linker distinguishes data from code symbols
- global_symbol_to_cdecl="sed -n -e 's/^T .* \(.*\)$/extern char \1();/p' -e 's/^. .* \(.*\)$/extern char \1;/p'"
- ;;
-irix*)
- symcode='[BCDEGRST]'
- ;;
-solaris*)
- symcode='[BDT]'
- ;;
-sysv4)
- symcode='[DFNSTU]'
- ;;
-esac
-
-# If we're using GNU nm, then use its standard symbol codes.
-if $NM -V 2>&1 | egrep '(GNU|with BFD)' > /dev/null; then
- symcode='[ABCDGISTW]'
-fi
-
-# Try without a prefix undercore, then with it.
-for ac_symprfx in "" "_"; do
-
- # Write the raw and C identifiers.
- global_symbol_pipe="sed -n -e 's/^.*[ ]\($symcode\)[ ][ ]*\($ac_symprfx\)$sympat$/$symxfrm/p'"
-
- # Check to see that the pipe works correctly.
- pipe_works=no
- $rm conftest*
- cat > conftest.c <&5
- if { (eval echo $progname:1636: \"$ac_compile\") 1>&5; (eval $ac_compile) 2>&5; } && test -s conftest.$objext; then
- # Now try to grab the symbols.
- nlist=conftest.nm
- if { echo "$progname:1639: eval \"$NM conftest.$objext | $global_symbol_pipe > $nlist\"" >&5; eval "$NM conftest.$objext | $global_symbol_pipe > $nlist 2>&5"; } && test -s "$nlist"; then
-
- # Try sorting and uniquifying the output.
- if sort "$nlist" | uniq > "$nlist"T; then
- mv -f "$nlist"T "$nlist"
- else
- rm -f "$nlist"T
- fi
-
- # Make sure that we snagged all the symbols we need.
- if egrep ' nm_test_var$' "$nlist" >/dev/null; then
- if egrep ' nm_test_func$' "$nlist" >/dev/null; then
- cat < conftest.c
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-EOF
- # Now generate the symbol file.
- eval "$global_symbol_to_cdecl"' < "$nlist" >> conftest.c'
-
- cat <> conftest.c
-#if defined (__STDC__) && __STDC__
-# define lt_ptr_t void *
-#else
-# define lt_ptr_t char *
-# define const
-#endif
-
-/* The mapping between symbol names and symbols. */
-const struct {
- const char *name;
- lt_ptr_t address;
-}
-lt_preloaded_symbols[] =
-{
-EOF
- sed 's/^. \(.*\) \(.*\)$/ {"\2", (lt_ptr_t) \&\2},/' < "$nlist" >> conftest.c
- cat <<\EOF >> conftest.c
- {0, (lt_ptr_t) 0}
-};
-
-#ifdef __cplusplus
-}
-#endif
-EOF
- # Now try linking the two files.
- mv conftest.$objext conftstm.$objext
- save_LIBS="$LIBS"
- save_CFLAGS="$CFLAGS"
- LIBS="conftstm.$objext"
- CFLAGS="$CFLAGS$no_builtin_flag"
- if { (eval echo $progname:1691: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest; then
- pipe_works=yes
- else
- echo "$progname: failed program was:" >&5
- cat conftest.c >&5
- fi
- LIBS="$save_LIBS"
- else
- echo "cannot find nm_test_func in $nlist" >&5
- fi
- else
- echo "cannot find nm_test_var in $nlist" >&5
- fi
- else
- echo "cannot run $global_symbol_pipe" >&5
- fi
- else
- echo "$progname: failed program was:" >&5
- cat conftest.c >&5
- fi
- $rm conftest* conftst*
-
- # Do not use the global_symbol_pipe unless it works.
- if test "$pipe_works" = yes; then
- break
- else
- global_symbol_pipe=
- fi
-done
-if test "$pipe_works" = yes; then
- echo "${ac_t}ok" 1>&6
-else
- echo "${ac_t}failed" 1>&6
-fi
-
-if test -z "$global_symbol_pipe"; then
- global_symbol_to_cdecl=
-fi
-
-# Check hardcoding attributes.
-echo $ac_n "checking how to hardcode library paths into programs... $ac_c" 1>&6
-hardcode_action=
-if test -n "$hardcode_libdir_flag_spec" || \
- test -n "$runpath_var"; then
-
- # We can hardcode non-existant directories.
- if test "$hardcode_direct" != no &&
- # If the only mechanism to avoid hardcoding is shlibpath_var, we
- # have to relink, otherwise we might link with an installed library
- # when we should be linking with a yet-to-be-installed one
- ## test "$hardcode_shlibpath_var" != no &&
- test "$hardcode_minus_L" != no; then
- # Linking always hardcodes the temporary library directory.
- hardcode_action=relink
- else
- # We can link without hardcoding, and we can hardcode nonexisting dirs.
- hardcode_action=immediate
- fi
-else
- # We cannot hardcode anything, or else we can only hardcode existing
- # directories.
- hardcode_action=unsupported
-fi
-echo "$ac_t$hardcode_action" 1>&6
-
-
-reload_flag=
-reload_cmds='$LD$reload_flag -o $output$reload_objs'
-echo $ac_n "checking for $LD option to reload object files... $ac_c" 1>&6
-# PORTME Some linkers may need a different reload flag.
-reload_flag='-r'
-echo "$ac_t$reload_flag" 1>&6
-test -n "$reload_flag" && reload_flag=" $reload_flag"
-
-# PORTME Fill in your ld.so characteristics
-library_names_spec=
-libname_spec='lib$name'
-soname_spec=
-postinstall_cmds=
-postuninstall_cmds=
-finish_cmds=
-finish_eval=
-shlibpath_var=
-shlibpath_overrides_runpath=unknown
-version_type=none
-dynamic_linker="$host_os ld.so"
-sys_lib_dlsearch_path_spec="/lib /usr/lib"
-sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib"
-file_magic_cmd=
-file_magic_test_file=
-deplibs_check_method='unknown'
-# Need to set the preceding variable on all platforms that support
-# interlibrary dependencies.
-# 'none' -- dependencies not supported.
-# `unknown' -- same as none, but documents that we really don't know.
-# 'pass_all' -- all dependencies passed with no checks.
-# 'test_compile' -- check by making test program.
-# 'file_magic [regex]' -- check by looking for files in library path
-# which responds to the $file_magic_cmd with a given egrep regex.
-# If you have `file' or equivalent on your system and you're not sure
-# whether `pass_all' will *always* work, you probably want this one.
-echo $ac_n "checking dynamic linker characteristics... $ac_c" 1>&6
-case "$host_os" in
-aix3*)
- version_type=linux
- library_names_spec='${libname}${release}.so$versuffix $libname.a'
- shlibpath_var=LIBPATH
-
- # AIX has no versioning support, so we append a major version to the name.
- soname_spec='${libname}${release}.so$major'
- ;;
-
-aix4*)
- version_type=linux
- # AIX has no versioning support, so currently we can not hardcode correct
- # soname into executable. Probably we can add versioning support to
- # collect2, so additional links can be useful in future.
- # We preserve .a as extension for shared libraries though AIX4.2
- # and later linker supports .so
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so$major $libname.a'
- shlibpath_var=LIBPATH
- deplibs_check_method=pass_all
- ;;
-
-amigaos*)
- library_names_spec='$libname.ixlibrary $libname.a'
- # Create ${libname}_ixlibrary.a entries in /sys/libs.
- finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`$echo "X$lib" | $Xsed -e '\''s%^.*/\([^/]*\)\.ixlibrary$%\1%'\''`; test $rm /sys/libs/${libname}_ixlibrary.a; $show "(cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a)"; (cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a) || exit 1; done'
- ;;
-
-beos*)
- library_names_spec='${libname}.so'
- dynamic_linker="$host_os ld.so"
- shlibpath_var=LIBRARY_PATH
- deplibs_check_method=pass_all
- lt_cv_dlopen="load_add_on"
- lt_cv_dlopen_libs=
- lt_cv_dlopen_self=yes
- ;;
-
-bsdi4*)
- version_type=linux
- need_version=no
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so$major $libname.so'
- soname_spec='${libname}${release}.so$major'
- finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir'
- shlibpath_var=LD_LIBRARY_PATH
- deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib)'
- file_magic_cmd=/usr/bin/file
- file_magic_test_file=/shlib/libc.so
- sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib"
- sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib"
- export_dynamic_flag_spec=-rdynamic
- # the default ld.so.conf also contains /usr/contrib/lib and
- # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow
- # libtool to hard-code these into programs
- ;;
-
-cygwin* | mingw*)
- version_type=windows
- need_version=no
- need_lib_prefix=no
- if test "$with_gcc" = yes; then
- library_names_spec='${libname}`echo ${release} | sed -e 's/[.]/-/g'`${versuffix}.dll $libname.a'
- else
- library_names_spec='${libname}`echo ${release} | sed -e 's/[.]/-/g'`${versuffix}.dll $libname.lib'
- fi
- dynamic_linker='Win32 ld.exe'
- deplibs_check_method='file_magic file format pei*-i386(.*architecture: i386)?'
- file_magic_cmd='${OBJDUMP} -f'
- # FIXME: first we should search . and the directory the executable is in
- shlibpath_var=PATH
- lt_cv_dlopen="LoadLibrary"
- lt_cv_dlopen_libs=
- ;;
-
-freebsd1*)
- dynamic_linker=no
- ;;
-
-freebsd*)
- objformat=`test -x /usr/bin/objformat && /usr/bin/objformat || echo aout`
- version_type=freebsd-$objformat
- case "$version_type" in
- freebsd-elf*)
- deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [LM]SB shared object'
- file_magic_cmd=/usr/bin/file
- file_magic_test_file=`echo /usr/lib/libc.so*`
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so $libname.so'
- need_version=no
- need_lib_prefix=no
- ;;
- freebsd-*)
- deplibs_check_method=unknown
- library_names_spec='${libname}${release}.so$versuffix $libname.so$versuffix'
- need_version=yes
- ;;
- esac
- shlibpath_var=LD_LIBRARY_PATH
- case "$host_os" in
- freebsd2* | freebsd3.[01]* | freebsdelf3.[01]*)
- shlibpath_overrides_runpath=yes
- ;;
- *) # from 3.2 on
- shlibpath_overrides_runpath=no
- ;;
- esac
- ;;
-
-gnu*)
- version_type=linux
- need_lib_prefix=no
- need_version=no
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so${major} ${libname}.so'
- soname_spec='${libname}${release}.so$major'
- shlibpath_var=LD_LIBRARY_PATH
- ;;
-
-hpux9* | hpux10* | hpux11*)
- # Give a soname corresponding to the major version so that dld.sl refuses to
- # link against other versions.
- dynamic_linker="$host_os dld.sl"
- version_type=sunos
- need_lib_prefix=no
- need_version=no
- shlibpath_var=SHLIB_PATH
- shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH
- library_names_spec='${libname}${release}.sl$versuffix ${libname}${release}.sl$major $libname.sl'
- soname_spec='${libname}${release}.sl$major'
- # HP-UX runs *really* slowly unless shared libraries are mode 555.
- postinstall_cmds='chmod 555 $lib'
- ;;
-
-irix5* | irix6*)
- version_type=irix
- need_lib_prefix=no
- need_version=no
- soname_spec='${libname}${release}.so.$major'
- library_names_spec='${libname}${release}.so.$versuffix ${libname}${release}.so.$major ${libname}${release}.so $libname.so'
- case "$host_os" in
- irix5*)
- libsuff= shlibsuff=
- # this will be overridden with pass_all, but let us keep it just in case
- deplibs_check_method="file_magic ELF 32-bit MSB dynamic lib MIPS - version 1"
- ;;
- *)
- case "$LD" in # libtool.m4 will add one of these switches to LD
- *-32|*"-32 ") libsuff= shlibsuff= libmagic=32-bit;;
- *-n32|*"-n32 ") libsuff=32 shlibsuff=N32 libmagic=N32;;
- *-64|*"-64 ") libsuff=64 shlibsuff=64 libmagic=64-bit;;
- *) libsuff= shlibsuff= libmagic=never-match;;
- esac
- ;;
- esac
- shlibpath_var=LD_LIBRARY${shlibsuff}_PATH
- shlibpath_overrides_runpath=no
- sys_lib_search_path_spec="/usr/lib${libsuff} /lib${libsuff} /usr/local/lib${libsuff}"
- sys_lib_dlsearch_path_spec="/usr/lib${libsuff} /lib${libsuff}"
- file_magic_cmd=/usr/bin/file
- file_magic_test_file=`echo /lib${libsuff}/libc.so*`
- deplibs_check_method='pass_all'
- ;;
-
-# No shared lib support for Linux oldld, aout, or coff.
-linux-gnuoldld* | linux-gnuaout* | linux-gnucoff*)
- dynamic_linker=no
- ;;
-
-# This must be Linux ELF.
-linux-gnu*)
- version_type=linux
- need_lib_prefix=no
- need_version=no
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so$major $libname.so'
- soname_spec='${libname}${release}.so$major'
- finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir'
- shlibpath_var=LD_LIBRARY_PATH
- shlibpath_overrides_runpath=no
- deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [LM]SB (shared object|dynamic lib )'
- file_magic_cmd=/usr/bin/file
- file_magic_test_file=`echo /lib/libc.so* /lib/libc-*.so`
-
- if test -f /lib/ld.so.1; then
- dynamic_linker='GNU ld.so'
- else
- # Only the GNU ld.so supports shared libraries on MkLinux.
- case "$host_cpu" in
- powerpc*) dynamic_linker=no ;;
- *) dynamic_linker='Linux ld.so' ;;
- esac
- fi
- ;;
-
-netbsd*)
- version_type=sunos
- if echo __ELF__ | $CC -E - | grep __ELF__ >/dev/null; then
- library_names_spec='${libname}${release}.so$versuffix ${libname}.so$versuffix'
- finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir'
- dynamic_linker='NetBSD (a.out) ld.so'
- else
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so$major ${libname}${release}.so ${libname}.so'
- soname_spec='${libname}${release}.so$major'
- dynamic_linker='NetBSD ld.elf_so'
- fi
- shlibpath_var=LD_LIBRARY_PATH
- ;;
-
-openbsd*)
- version_type=sunos
- if test "$with_gnu_ld" = yes; then
- need_lib_prefix=no
- need_version=no
- fi
- library_names_spec='${libname}${release}.so$versuffix ${libname}.so$versuffix'
- finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir'
- shlibpath_var=LD_LIBRARY_PATH
- ;;
-
-os2*)
- libname_spec='$name'
- need_lib_prefix=no
- library_names_spec='$libname.dll $libname.a'
- dynamic_linker='OS/2 ld.exe'
- shlibpath_var=LIBPATH
- ;;
-
-osf3* | osf4* | osf5*)
- version_type=osf
- need_version=no
- soname_spec='${libname}${release}.so'
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so $libname.so'
- shlibpath_var=LD_LIBRARY_PATH
- # this will be overridden with pass_all, but let us keep it just in case
- deplibs_check_method='file_magic COFF format alpha shared library'
- file_magic_cmd=/usr/bin/file
- file_magic_test_file=/shlib/libc.so
- deplibs_check_method='pass_all'
- sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib"
- sys_lib_dlsearch_path_spec="$sys_lib_search_path_spec"
- ;;
-
-sco3.2v5*)
- version_type=osf
- soname_spec='${libname}${release}.so$major'
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so$major $libname.so'
- shlibpath_var=LD_LIBRARY_PATH
- ;;
-
-solaris*)
- version_type=linux
- need_lib_prefix=no
- need_version=no
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so$major $libname.so'
- soname_spec='${libname}${release}.so$major'
- shlibpath_var=LD_LIBRARY_PATH
- shlibpath_overrides_runpath=yes
- # ldd complains unless libraries are executable
- postinstall_cmds='chmod +x $lib'
- deplibs_check_method="file_magic ELF [0-9][0-9]-bit [LM]SB dynamic lib"
- file_magic_cmd=/usr/bin/file
- file_magic_test_file=/lib/libc.so
- ;;
-
-sunos4*)
- version_type=sunos
- library_names_spec='${libname}${release}.so$versuffix ${libname}.so$versuffix'
- finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir'
- shlibpath_var=LD_LIBRARY_PATH
- shlibpath_overrides_runpath=yes
- if test "$with_gnu_ld" = yes; then
- need_lib_prefix=no
- fi
- need_version=yes
- ;;
-
-sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*)
- version_type=linux
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so$major $libname.so'
- soname_spec='${libname}${release}.so$major'
- shlibpath_var=LD_LIBRARY_PATH
- case "$host_vendor" in
- ncr)
- deplibs_check_method='pass_all'
- ;;
- motorola)
- need_lib_prefix=no
- need_version=no
- shlibpath_overrides_runpath=no
- sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib'
- deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib) M[0-9][0-9]* Version [0-9]'
- file_magic_cmd=/usr/bin/file
- file_magic_test_file=`echo /usr/lib/libc.so*`
- ;;
- esac
- ;;
-
-uts4*)
- version_type=linux
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so$major $libname.so'
- soname_spec='${libname}${release}.so$major'
- shlibpath_var=LD_LIBRARY_PATH
- ;;
-
-dgux*)
- version_type=linux
- need_lib_prefix=no
- need_version=no
- library_names_spec='${libname}${release}.so$versuffix ${libname}${release}.so$major $libname.so'
- soname_spec='${libname}${release}.so$major'
- shlibpath_var=LD_LIBRARY_PATH
- ;;
-
-sysv4*MP*)
- if test -d /usr/nec ;then
- version_type=linux
- library_names_spec='$libname.so.$versuffix $libname.so.$major $libname.so'
- soname_spec='$libname.so.$major'
- shlibpath_var=LD_LIBRARY_PATH
- fi
- ;;
-
-*)
- dynamic_linker=no
- ;;
-esac
-echo "$ac_t$dynamic_linker" 1>&6
-test "$dynamic_linker" = no && can_build_shared=no
-
-# Report the final consequences.
-echo "checking if libtool supports shared libraries... $can_build_shared" 1>&6
-
-# Only try to build win32 dlls if AC_LIBTOOL_WIN32_DLL was used in
-# configure.in, otherwise build static only libraries.
-case "$host_os" in
-cygwin* | mingw* | os2*)
- if test x$can_build_shared = xyes; then
- test x$enable_win32_dll = xno && can_build_shared=no
- echo "checking if package supports dlls... $can_build_shared" 1>&6
- fi
-;;
-esac
-
-if test -n "$file_magic_test_file" && test -n "$file_magic_cmd"; then
- case "$deplibs_check_method" in
- "file_magic "*)
- file_magic_regex="`expr \"$deplibs_check_method\" : \"file_magic \(.*\)\"`"
- if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null |
- egrep "$file_magic_regex" > /dev/null; then
- :
- else
- cat <&2
-
-*** Warning: the command libtool uses to detect shared libraries,
-*** $file_magic_cmd, produces output that libtool cannot recognize.
-*** The result is that libtool may fail to recognize shared libraries
-*** as such. This will affect the creation of libtool libraries that
-*** depend on shared libraries, but programs linked with such libtool
-*** libraries will work regardless of this problem. Nevertheless, you
-*** may want to report the problem to your system manager and/or to
-*** bug-libtool@gnu.org
-
-EOF
- fi ;;
- esac
-fi
-
-echo $ac_n "checking whether to build shared libraries... $ac_c" 1>&6
-test "$can_build_shared" = "no" && enable_shared=no
-
-# On AIX, shared libraries and static libraries use the same namespace, and
-# are all built from PIC.
-case "$host_os" in
-aix3*)
- test "$enable_shared" = yes && enable_static=no
- if test -n "$RANLIB"; then
- archive_cmds="$archive_cmds~\$RANLIB \$lib"
- postinstall_cmds='$RANLIB $lib'
- fi
- ;;
-
-aix4*)
- test "$enable_shared" = yes && enable_static=no
- ;;
-esac
-
-echo "$ac_t$enable_shared" 1>&6
-
-# Make sure either enable_shared or enable_static is yes.
-test "$enable_shared" = yes || enable_static=yes
-
-echo "checking whether to build static libraries... $enable_static" 1>&6
-
-if test "$hardcode_action" = relink; then
- # Fast installation is not supported
- enable_fast_install=no
-elif test "$shlibpath_overrides_runpath" = yes ||
- test "$enable_shared" = no; then
- # Fast installation is not necessary
- enable_fast_install=needless
-fi
-
-echo $ac_n "checking for objdir... $ac_c" 1>&6
-rm -f .libs 2>/dev/null
-mkdir .libs 2>/dev/null
-if test -d .libs; then
- objdir=.libs
-else
- # MS-DOS does not allow filenames that begin with a dot.
- objdir=_libs
-fi
-rmdir .libs 2>/dev/null
-echo "$ac_t$objdir" 1>&6
-
-if test "x$enable_dlopen" != xyes; then
- enable_dlopen=unknown
- enable_dlopen_self=unknown
- enable_dlopen_self_static=unknown
-else
-if eval "test \"`echo '$''{'lt_cv_dlopen'+set}'`\" != set"; then
- lt_cv_dlopen=no lt_cv_dlopen_libs=
-echo $ac_n "checking for dlopen in -ldl""... $ac_c" 1>&6
-echo "$progname:2212: checking for dlopen in -ldl" >&5
-ac_lib_var=`echo dl'_'dlopen | sed 'y%./+-%__p_%'`
-if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- ac_save_LIBS="$LIBS"
-LIBS="-ldl $LIBS"
-cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then
- rm -rf conftest*
- eval "ac_cv_lib_$ac_lib_var=yes"
-else
- echo "$progname: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- eval "ac_cv_lib_$ac_lib_var=no"
-fi
-rm -f conftest*
-LIBS="$ac_save_LIBS"
-
-fi
-if eval "test \"`echo '$ac_cv_lib_'$ac_lib_var`\" = yes"; then
- echo "$ac_t""yes" 1>&6
- lt_cv_dlopen="dlopen" lt_cv_dlopen_libs="-ldl"
-else
- echo "$ac_t""no" 1>&6
-echo $ac_n "checking for dlopen""... $ac_c" 1>&6
-echo "$progname:2252: checking for dlopen" >&5
-if eval "test \"`echo '$''{'ac_cv_func_dlopen'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- cat > conftest.$ac_ext <
-/* Override any gcc2 internal prototype to avoid an error. */
-/* We use char because int might match the return type of a gcc2
- builtin and then its argument prototype would still apply. */
-#ifdef __cplusplus
-extern "C"
-#endif
-char dlopen();
-
-int main() {
-
-/* The GNU C library defines this for functions which it implements
- to always fail with ENOSYS. Some functions are actually named
- something starting with __ and the normal name is an alias. */
-#if defined (__stub_dlopen) || defined (__stub___dlopen)
-choke me
-#else
-dlopen();
-#endif
-
-; return 0; }
-EOF
-if { (eval echo $progname:2282: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then
- rm -rf conftest*
- eval "ac_cv_func_dlopen=yes"
-else
- echo "$progname: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- eval "ac_cv_func_dlopen=no"
-fi
-rm -f conftest*
-fi
-if eval "test \"`echo '$ac_cv_func_'dlopen`\" = yes"; then
- echo "$ac_t""yes" 1>&6
- lt_cv_dlopen="dlopen"
-else
- echo "$ac_t""no" 1>&6
-echo $ac_n "checking for dld_link in -ldld""... $ac_c" 1>&6
-echo "$progname:2299: checking for dld_link in -ldld" >&5
-ac_lib_var=`echo dld'_'dld_link | sed 'y%./+-%__p_%'`
-if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- ac_save_LIBS="$LIBS"
-LIBS="-ldld $LIBS"
-cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then
- rm -rf conftest*
- eval "ac_cv_lib_$ac_lib_var=yes"
-else
- echo "$progname: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- eval "ac_cv_lib_$ac_lib_var=no"
-fi
-rm -f conftest*
-LIBS="$ac_save_LIBS"
-
-fi
-if eval "test \"`echo '$ac_cv_lib_'$ac_lib_var`\" = yes"; then
- echo "$ac_t""yes" 1>&6
- lt_cv_dlopen="dld_link" lt_cv_dlopen_libs="-ldld"
-else
- echo "$ac_t""no" 1>&6
-echo $ac_n "checking for shl_load""... $ac_c" 1>&6
-echo "$progname:2339: checking for shl_load" >&5
-if eval "test \"`echo '$''{'ac_cv_func_shl_load'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- cat > conftest.$ac_ext <
-/* Override any gcc2 internal prototype to avoid an error. */
-/* We use char because int might match the return type of a gcc2
- builtin and then its argument prototype would still apply. */
-#ifdef __cplusplus
-extern "C"
-#endif
-char shl_load();
-
-int main() {
-
-/* The GNU C library defines this for functions which it implements
- to always fail with ENOSYS. Some functions are actually named
- something starting with __ and the normal name is an alias. */
-#if defined (__stub_shl_load) || defined (__stub___shl_load)
-choke me
-#else
-shl_load();
-#endif
-
-; return 0; }
-EOF
-if { (eval echo $progname:2369: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then
- rm -rf conftest*
- eval "ac_cv_func_shl_load=yes"
-else
- echo "$progname: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- eval "ac_cv_func_shl_load=no"
-fi
-rm -f conftest*
-fi
-
-if eval "test \"`echo '$ac_cv_func_'shl_load`\" = yes"; then
- echo "$ac_t""yes" 1>&6
- lt_cv_dlopen="shl_load"
-else
- echo "$ac_t""no" 1>&6
-echo $ac_n "checking for shl_load in -ldld""... $ac_c" 1>&6
-echo "$progname:2387: checking for shl_load in -ldld" >&5
-ac_lib_var=`echo dld'_'shl_load | sed 'y%./+-%__p_%'`
-if eval "test \"`echo '$''{'ac_cv_lib_$ac_lib_var'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- ac_save_LIBS="$LIBS"
-LIBS="-ldld $LIBS"
-cat > conftest.$ac_ext <&5; (eval $ac_link) 2>&5; } && test -s conftest${ac_exeext}; then
- rm -rf conftest*
- eval "ac_cv_lib_$ac_lib_var=yes"
-else
- echo "$progname: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- eval "ac_cv_lib_$ac_lib_var=no"
-fi
-rm -f conftest*
-LIBS="$ac_save_LIBS"
-
-fi
-if eval "test \"`echo '$ac_cv_lib_'$ac_lib_var`\" = yes"; then
- echo "$ac_t""yes" 1>&6
- lt_cv_dlopen="shl_load" lt_cv_dlopen_libs="-ldld"
-else
- echo "$ac_t""no" 1>&6
-fi
-
-
-fi
-
-
-fi
-
-
-fi
-
-
-fi
-
-fi
-
- if test "x$lt_cv_dlopen" != xno; then
- enable_dlopen=yes
- fi
-
- case "$lt_cv_dlopen" in
- dlopen)
-for ac_hdr in dlfcn.h; do
-ac_safe=`echo "$ac_hdr" | sed 'y%./+-%__p_%'`
-echo $ac_n "checking for $ac_hdr""... $ac_c" 1>&6
-echo "$progname:2452: checking for $ac_hdr" >&5
-if eval "test \"`echo '$''{'ac_cv_header_$ac_safe'+set}'`\" = set"; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- cat > conftest.$ac_ext <
-int fnord = 0;
-EOF
-ac_try="$ac_compile >/dev/null 2>conftest.out"
-{ (eval echo $progname:2462: \"$ac_try\") 1>&5; (eval $ac_try) 2>&5; }
-ac_err=`grep -v '^ *+' conftest.out | grep -v "^conftest.${ac_ext}\$"`
-if test -z "$ac_err"; then
- rm -rf conftest*
- eval "ac_cv_header_$ac_safe=yes"
-else
- echo "$ac_err" >&5
- echo "$progname: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -rf conftest*
- eval "ac_cv_header_$ac_safe=no"
-fi
-rm -f conftest*
-fi
-if eval "test \"`echo '$ac_cv_header_'$ac_safe`\" = yes"; then
- echo "$ac_t""yes" 1>&6
-else
- echo "$ac_t""no" 1>&6
-fi
-done
-
- if test "x$ac_cv_header_dlfcn_h" = xyes; then
- CPPFLAGS="$CPPFLAGS -DHAVE_DLFCN_H"
- fi
- eval LDFLAGS=\"\$LDFLAGS $export_dynamic_flag_spec\"
- LIBS="$lt_cv_dlopen_libs $LIBS"
-
- echo $ac_n "checking whether a program can dlopen itself""... $ac_c" 1>&6
-echo "$progname:2490: checking whether a program can dlopen itself" >&5
-if test "${lt_cv_dlopen_self+set}" = set; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- if test "$cross_compiling" = yes; then
- lt_cv_dlopen_self=cross
- else
- cat > conftest.c <
-#endif
-
-#include
-
-#ifdef RTLD_GLOBAL
-# define LTDL_GLOBAL RTLD_GLOBAL
-#else
-# ifdef DL_GLOBAL
-# define LTDL_GLOBAL DL_GLOBAL
-# else
-# define LTDL_GLOBAL 0
-# endif
-#endif
-
-/* We may have to define LTDL_LAZY_OR_NOW in the command line if we
- find out it does not work in some platform. */
-#ifndef LTDL_LAZY_OR_NOW
-# ifdef RTLD_LAZY
-# define LTDL_LAZY_OR_NOW RTLD_LAZY
-# else
-# ifdef DL_LAZY
-# define LTDL_LAZY_OR_NOW DL_LAZY
-# else
-# ifdef RTLD_NOW
-# define LTDL_LAZY_OR_NOW RTLD_NOW
-# else
-# ifdef DL_NOW
-# define LTDL_LAZY_OR_NOW DL_NOW
-# else
-# define LTDL_LAZY_OR_NOW 0
-# endif
-# endif
-# endif
-# endif
-#endif
-
-fnord() { int i=42;}
-main() { void *self, *ptr1, *ptr2; self=dlopen(0,LTDL_GLOBAL|LTDL_LAZY_OR_NOW);
- if(self) { ptr1=dlsym(self,"fnord"); ptr2=dlsym(self,"_fnord");
- if(ptr1 || ptr2) { dlclose(self); exit(0); } } exit(1); }
-
-EOF
-if { (eval echo $progname:2544: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
-then
- lt_cv_dlopen_self=yes
-else
- echo "$progname: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -fr conftest*
- lt_cv_dlopen_self=no
-fi
-rm -fr conftest*
-fi
-
-fi
-
-echo "$ac_t""$lt_cv_dlopen_self" 1>&6
-
- if test "$lt_cv_dlopen_self" = yes; then
- LDFLAGS="$LDFLAGS $link_static_flag"
- echo $ac_n "checking whether a statically linked program can dlopen itself""... $ac_c" 1>&6
-echo "$progname:2563: checking whether a statically linked program can dlopen itself" >&5
-if test "${lt_cv_dlopen_self_static+set}" = set; then
- echo $ac_n "(cached) $ac_c" 1>&6
-else
- if test "$cross_compiling" = yes; then
- lt_cv_dlopen_self_static=cross
- else
- cat > conftest.c <
-#endif
-
-#include
-
-#ifdef RTLD_GLOBAL
-# define LTDL_GLOBAL RTLD_GLOBAL
-#else
-# ifdef DL_GLOBAL
-# define LTDL_GLOBAL DL_GLOBAL
-# else
-# define LTDL_GLOBAL 0
-# endif
-#endif
-
-/* We may have to define LTDL_LAZY_OR_NOW in the command line if we
- find out it does not work in some platform. */
-#ifndef LTDL_LAZY_OR_NOW
-# ifdef RTLD_LAZY
-# define LTDL_LAZY_OR_NOW RTLD_LAZY
-# else
-# ifdef DL_LAZY
-# define LTDL_LAZY_OR_NOW DL_LAZY
-# else
-# ifdef RTLD_NOW
-# define LTDL_LAZY_OR_NOW RTLD_NOW
-# else
-# ifdef DL_NOW
-# define LTDL_LAZY_OR_NOW DL_NOW
-# else
-# define LTDL_LAZY_OR_NOW 0
-# endif
-# endif
-# endif
-# endif
-#endif
-
-fnord() { int i=42;}
-main() { void *self, *ptr1, *ptr2; self=dlopen(0,LTDL_GLOBAL|LTDL_LAZY_OR_NOW);
- if(self) { ptr1=dlsym(self,"fnord"); ptr2=dlsym(self,"_fnord");
- if(ptr1 || ptr2) { dlclose(self); exit(0); } } exit(1); }
-
-EOF
-if { (eval echo $progname:2617: \"$ac_link\") 1>&5; (eval $ac_link) 2>&5; } && test -s conftest && (./conftest; exit) 2>/dev/null
-then
- lt_cv_dlopen_self_static=yes
-else
- echo "$progname: failed program was:" >&5
- cat conftest.$ac_ext >&5
- rm -fr conftest*
- lt_cv_dlopen_self_static=no
-fi
-rm -fr conftest*
-fi
-
-fi
-
-echo "$ac_t""$lt_cv_dlopen_self_static" 1>&6
-fi
- ;;
- esac
-
- case "$lt_cv_dlopen_self" in
- yes|no) enable_dlopen_self=$lt_cv_dlopen_self ;;
- *) enable_dlopen_self=unknown ;;
- esac
-
- case "$lt_cv_dlopen_self_static" in
- yes|no) enable_dlopen_self_static=$lt_cv_dlopen_self_static ;;
- *) enable_dlopen_self_static=unknown ;;
- esac
-fi
-
-# Copy echo and quote the copy, instead of the original, because it is
-# used later.
-ltecho="$echo"
-if test "X$ltecho" = "X$CONFIG_SHELL $0 --fallback-echo"; then
- ltecho="$CONFIG_SHELL \$0 --fallback-echo"
-fi
-LTSHELL="$SHELL"
-
-LTCONFIG_VERSION="$VERSION"
-
-# Only quote variables if we're using ltmain.sh.
-case "$ltmain" in
-*.sh)
- # Now quote all the things that may contain metacharacters.
- for var in ltecho old_CC old_CFLAGS old_CPPFLAGS \
- old_LD old_LDFLAGS old_LIBS \
- old_NM old_RANLIB old_LN_S old_DLLTOOL old_OBJDUMP old_AS \
- AR CC LD LN_S NM LTSHELL LTCONFIG_VERSION \
- reload_flag reload_cmds wl \
- pic_flag link_static_flag no_builtin_flag export_dynamic_flag_spec \
- thread_safe_flag_spec whole_archive_flag_spec libname_spec \
- library_names_spec soname_spec \
- RANLIB old_archive_cmds old_archive_from_new_cmds old_postinstall_cmds \
- old_postuninstall_cmds archive_cmds archive_expsym_cmds postinstall_cmds postuninstall_cmds \
- file_magic_cmd export_symbols_cmds deplibs_check_method allow_undefined_flag no_undefined_flag \
- finish_cmds finish_eval global_symbol_pipe global_symbol_to_cdecl \
- hardcode_libdir_flag_spec hardcode_libdir_separator \
- sys_lib_search_path_spec sys_lib_dlsearch_path_spec \
- compiler_c_o compiler_o_lo need_locks exclude_expsyms include_expsyms; do
-
- case "$var" in
- reload_cmds | old_archive_cmds | old_archive_from_new_cmds | \
- old_postinstall_cmds | old_postuninstall_cmds | \
- export_symbols_cmds | archive_cmds | archive_expsym_cmds | \
- postinstall_cmds | postuninstall_cmds | \
- finish_cmds | sys_lib_search_path_spec | sys_lib_dlsearch_path_spec)
- # Double-quote double-evaled strings.
- eval "$var=\\\"\`\$echo \"X\$$var\" | \$Xsed -e \"\$double_quote_subst\" -e \"\$sed_quote_subst\" -e \"\$delay_variable_subst\"\`\\\""
- ;;
- *)
- eval "$var=\\\"\`\$echo \"X\$$var\" | \$Xsed -e \"\$sed_quote_subst\"\`\\\""
- ;;
- esac
- done
-
- case "$ltecho" in
- *'\$0 --fallback-echo"')
- ltecho=`$echo "X$ltecho" | $Xsed -e 's/\\\\\\\$0 --fallback-echo"$/$0 --fallback-echo"/'`
- ;;
- esac
-
- trap "$rm \"$ofile\"; exit 1" 1 2 15
- echo "creating $ofile"
- $rm "$ofile"
- cat < "$ofile"
-#! $SHELL
-
-# `$echo "$ofile" | sed 's%^.*/%%'` - Provide generalized library-building support services.
-# Generated automatically by $PROGRAM (GNU $PACKAGE $VERSION$TIMESTAMP)
-# NOTE: Changes made to this file will be lost: look at ltconfig or ltmain.sh.
-#
-# Copyright (C) 1996-1999 Free Software Foundation, Inc.
-# Originally by Gordon Matzigkeit , 1996
-#
-# This program is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful, but
-# WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-# General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-#
-# As a special exception to the GNU General Public License, if you
-# distribute this file as part of a program that contains a
-# configuration script generated by Autoconf, you may include it under
-# the same distribution terms that you use for the rest of that program.
-
-# Sed that helps us avoid accidentally triggering echo(1) options like -n.
-Xsed="sed -e s/^X//"
-
-# The HP-UX ksh and POSIX shell print the target directory to stdout
-# if CDPATH is set.
-if test "X\${CDPATH+set}" = Xset; then CDPATH=:; export CDPATH; fi
-
-### BEGIN LIBTOOL CONFIG
-EOF
- cfgfile="$ofile"
- ;;
-
-*)
- # Double-quote the variables that need it (for aesthetics).
- for var in old_CC old_CFLAGS old_CPPFLAGS \
- old_LD old_LDFLAGS old_LIBS \
- old_NM old_RANLIB old_LN_S old_DLLTOOL old_OBJDUMP old_AS; do
- eval "$var=\\\"\$var\\\""
- done
-
- # Just create a config file.
- cfgfile="$ofile.cfg"
- trap "$rm \"$cfgfile\"; exit 1" 1 2 15
- echo "creating $cfgfile"
- $rm "$cfgfile"
- cat < "$cfgfile"
-# `$echo "$cfgfile" | sed 's%^.*/%%'` - Libtool configuration file.
-# Generated automatically by $PROGRAM (GNU $PACKAGE $VERSION$TIMESTAMP)
-EOF
- ;;
-esac
-
-cat <> "$cfgfile"
-# Libtool was configured as follows, on host `(hostname || uname -n) 2>/dev/null | sed 1q`:
-#
-# CC=$old_CC CFLAGS=$old_CFLAGS CPPFLAGS=$old_CPPFLAGS \\
-# LD=$old_LD LDFLAGS=$old_LDFLAGS LIBS=$old_LIBS \\
-# NM=$old_NM RANLIB=$old_RANLIB LN_S=$old_LN_S \\
-# DLLTOOL=$old_DLLTOOL OBJDUMP=$old_OBJDUMP AS=$old_AS \\
-# $0$ltconfig_args
-#
-# Compiler and other test output produced by $progname, useful for
-# debugging $progname, is in ./config.log if it exists.
-
-# The version of $progname that generated this script.
-LTCONFIG_VERSION=$LTCONFIG_VERSION
-
-# Shell to use when invoking shell scripts.
-SHELL=$LTSHELL
-
-# Whether or not to build shared libraries.
-build_libtool_libs=$enable_shared
-
-# Whether or not to build static libraries.
-build_old_libs=$enable_static
-
-# Whether or not to optimize for fast installation.
-fast_install=$enable_fast_install
-
-# The host system.
-host_alias=$host_alias
-host=$host
-
-# An echo program that does not interpret backslashes.
-echo=$ltecho
-
-# The archiver.
-AR=$AR
-
-# The default C compiler.
-CC=$CC
-
-# The linker used to build libraries.
-LD=$LD
-
-# Whether we need hard or soft links.
-LN_S=$LN_S
-
-# A BSD-compatible nm program.
-NM=$NM
-
-# Used on cygwin: DLL creation program.
-DLLTOOL="$DLLTOOL"
-
-# Used on cygwin: object dumper.
-OBJDUMP="$OBJDUMP"
-
-# Used on cygwin: assembler.
-AS="$AS"
-
-# The name of the directory that contains temporary libtool files.
-objdir=$objdir
-
-# How to create reloadable object files.
-reload_flag=$reload_flag
-reload_cmds=$reload_cmds
-
-# How to pass a linker flag through the compiler.
-wl=$wl
-
-# Object file suffix (normally "o").
-objext="$objext"
-
-# Old archive suffix (normally "a").
-libext="$libext"
-
-# Executable file suffix (normally "").
-exeext="$exeext"
-
-# Additional compiler flags for building library objects.
-pic_flag=$pic_flag
-
-# Does compiler simultaneously support -c and -o options?
-compiler_c_o=$compiler_c_o
-
-# Can we write directly to a .lo ?
-compiler_o_lo=$compiler_o_lo
-
-# Must we lock files when doing compilation ?
-need_locks=$need_locks
-
-# Do we need the lib prefix for modules?
-need_lib_prefix=$need_lib_prefix
-
-# Do we need a version for libraries?
-need_version=$need_version
-
-# Whether dlopen is supported.
-dlopen=$enable_dlopen
-
-# Whether dlopen of programs is supported.
-dlopen_self=$enable_dlopen_self
-
-# Whether dlopen of statically linked programs is supported.
-dlopen_self_static=$enable_dlopen_self_static
-
-# Compiler flag to prevent dynamic linking.
-link_static_flag=$link_static_flag
-
-# Compiler flag to turn off builtin functions.
-no_builtin_flag=$no_builtin_flag
-
-# Compiler flag to allow reflexive dlopens.
-export_dynamic_flag_spec=$export_dynamic_flag_spec
-
-# Compiler flag to generate shared objects directly from archives.
-whole_archive_flag_spec=$whole_archive_flag_spec
-
-# Compiler flag to generate thread-safe objects.
-thread_safe_flag_spec=$thread_safe_flag_spec
-
-# Library versioning type.
-version_type=$version_type
-
-# Format of library name prefix.
-libname_spec=$libname_spec
-
-# List of archive names. First name is the real one, the rest are links.
-# The last name is the one that the linker finds with -lNAME.
-library_names_spec=$library_names_spec
-
-# The coded name of the library, if different from the real name.
-soname_spec=$soname_spec
-
-# Commands used to build and install an old-style archive.
-RANLIB=$RANLIB
-old_archive_cmds=$old_archive_cmds
-old_postinstall_cmds=$old_postinstall_cmds
-old_postuninstall_cmds=$old_postuninstall_cmds
-
-# Create an old-style archive from a shared archive.
-old_archive_from_new_cmds=$old_archive_from_new_cmds
-
-# Commands used to build and install a shared archive.
-archive_cmds=$archive_cmds
-archive_expsym_cmds=$archive_expsym_cmds
-postinstall_cmds=$postinstall_cmds
-postuninstall_cmds=$postuninstall_cmds
-
-# Method to check whether dependent libraries are shared objects.
-deplibs_check_method=$deplibs_check_method
-
-# Command to use when deplibs_check_method == file_magic.
-file_magic_cmd=$file_magic_cmd
-
-# Flag that allows shared libraries with undefined symbols to be built.
-allow_undefined_flag=$allow_undefined_flag
-
-# Flag that forces no undefined symbols.
-no_undefined_flag=$no_undefined_flag
-
-# Commands used to finish a libtool library installation in a directory.
-finish_cmds=$finish_cmds
-
-# Same as above, but a single script fragment to be evaled but not shown.
-finish_eval=$finish_eval
-
-# Take the output of nm and produce a listing of raw symbols and C names.
-global_symbol_pipe=$global_symbol_pipe
-
-# Transform the output of nm in a proper C declaration
-global_symbol_to_cdecl=$global_symbol_to_cdecl
-
-# This is the shared library runtime path variable.
-runpath_var=$runpath_var
-
-# This is the shared library path variable.
-shlibpath_var=$shlibpath_var
-
-# Is shlibpath searched before the hard-coded library search path?
-shlibpath_overrides_runpath=$shlibpath_overrides_runpath
-
-# How to hardcode a shared library path into an executable.
-hardcode_action=$hardcode_action
-
-# Flag to hardcode \$libdir into a binary during linking.
-# This must work even if \$libdir does not exist.
-hardcode_libdir_flag_spec=$hardcode_libdir_flag_spec
-
-# Whether we need a single -rpath flag with a separated argument.
-hardcode_libdir_separator=$hardcode_libdir_separator
-
-# Set to yes if using DIR/libNAME.so during linking hardcodes DIR into the
-# resulting binary.
-hardcode_direct=$hardcode_direct
-
-# Set to yes if using the -LDIR flag during linking hardcodes DIR into the
-# resulting binary.
-hardcode_minus_L=$hardcode_minus_L
-
-# Set to yes if using SHLIBPATH_VAR=DIR during linking hardcodes DIR into
-# the resulting binary.
-hardcode_shlibpath_var=$hardcode_shlibpath_var
-
-# Compile-time system search path for libraries
-sys_lib_search_path_spec=$sys_lib_search_path_spec
-
-# Run-time system search path for libraries
-sys_lib_dlsearch_path_spec=$sys_lib_dlsearch_path_spec
-
-# Fix the shell variable \$srcfile for the compiler.
-fix_srcfile_path="$fix_srcfile_path"
-
-# Set to yes if exported symbols are required.
-always_export_symbols=$always_export_symbols
-
-# The commands to list exported symbols.
-export_symbols_cmds=$export_symbols_cmds
-
-# Symbols that should not be listed in the preloaded symbols.
-exclude_expsyms=$exclude_expsyms
-
-# Symbols that must always be exported.
-include_expsyms=$include_expsyms
-
-EOF
-
-case "$ltmain" in
-*.sh)
- echo '### END LIBTOOL CONFIG' >> "$ofile"
- echo >> "$ofile"
- case "$host_os" in
- aix3*)
- cat <<\EOF >> "$ofile"
-
-# AIX sometimes has problems with the GCC collect2 program. For some
-# reason, if we set the COLLECT_NAMES environment variable, the problems
-# vanish in a puff of smoke.
-if test "X${COLLECT_NAMES+set}" != Xset; then
- COLLECT_NAMES=
- export COLLECT_NAMES
-fi
-EOF
- ;;
- esac
-
- # Append the ltmain.sh script.
- sed '$q' "$ltmain" >> "$ofile" || (rm -f "$ofile"; exit 1)
- # We use sed instead of cat because bash on DJGPP gets confused if
- # if finds mixed CR/LF and LF-only lines. Since sed operates in
- # text mode, it properly converts lines to CR/LF. This bash problem
- # is reportedly fixed, but why not run on old versions too?
-
- chmod +x "$ofile"
- ;;
-
-*)
- # Compile the libtool program.
- echo "FIXME: would compile $ltmain"
- ;;
-esac
-
-test -n "$cache_file" || exit 0
-
-# AC_CACHE_SAVE
-trap '' 1 2 15
-cat > confcache <<\EOF
-# This file is a shell script that caches the results of configure
-# tests run on this system so they can be shared between configure
-# scripts and configure runs. It is not useful on other systems.
-# If it contains results you don't want to keep, you may remove or edit it.
-#
-# By default, configure uses ./config.cache as the cache file,
-# creating it if it does not exist already. You can give configure
-# the --cache-file=FILE option to use a different cache file; that is
-# what configure does when it calls configure scripts in
-# subdirectories, so they share the cache.
-# Giving --cache-file=/dev/null disables caching, for debugging configure.
-# config.status only pays attention to the cache file if you give it the
-# --recheck option to rerun configure.
-#
-EOF
-# The following way of writing the cache mishandles newlines in values,
-# but we know of no workaround that is simple, portable, and efficient.
-# So, don't put newlines in cache variables' values.
-# Ultrix sh set writes to stderr and can't be redirected directly,
-# and sets the high bit in the cache file unless we assign to the vars.
-(set) 2>&1 |
- case `(ac_space=' '; set | grep ac_space) 2>&1` in
- *ac_space=\ *)
- # `set' does not quote correctly, so add quotes (double-quote substitution
- # turns \\\\ into \\, and sed turns \\ into \).
- sed -n \
- -e "s/'/'\\\\''/g" \
- -e "s/^\\([a-zA-Z0-9_]*_cv_[a-zA-Z0-9_]*\\)=\\(.*\\)/\\1=\${\\1='\\2'}/p"
- ;;
- *)
- # `set' quotes correctly as required by POSIX, so do not add quotes.
- sed -n -e 's/^\([a-zA-Z0-9_]*_cv_[a-zA-Z0-9_]*\)=\(.*\)/\1=${\1=\2}/p'
- ;;
- esac >> confcache
-if cmp -s $cache_file confcache; then
- :
-else
- if test -w $cache_file; then
- echo "updating cache $cache_file"
- cat confcache > $cache_file
- else
- echo "not updating unwritable cache $cache_file"
- fi
-fi
-rm -f confcache
-
-exit 0
-
-# Local Variables:
-# mode:shell-script
-# sh-indentation:2
-# End:
diff --git a/pcre/ltmain.sh b/pcre/ltmain.sh
deleted file mode 100644
index ab65054f..00000000
--- a/pcre/ltmain.sh
+++ /dev/null
@@ -1,4012 +0,0 @@
-# ltmain.sh - Provide generalized library-building support services.
-# NOTE: Changing this file will not affect anything until you rerun ltconfig.
-#
-# Copyright (C) 1996-1999 Free Software Foundation, Inc.
-# Originally by Gordon Matzigkeit , 1996
-#
-# This program is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful, but
-# WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-# General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-#
-# As a special exception to the GNU General Public License, if you
-# distribute this file as part of a program that contains a
-# configuration script generated by Autoconf, you may include it under
-# the same distribution terms that you use for the rest of that program.
-
-# Check that we have a working $echo.
-if test "X$1" = X--no-reexec; then
- # Discard the --no-reexec flag, and continue.
- shift
-elif test "X$1" = X--fallback-echo; then
- # Avoid inline document here, it may be left over
- :
-elif test "X`($echo '\t') 2>/dev/null`" = 'X\t'; then
- # Yippee, $echo works!
- :
-else
- # Restart under the correct shell, and then maybe $echo will work.
- exec $SHELL "$0" --no-reexec ${1+"$@"}
-fi
-
-if test "X$1" = X--fallback-echo; then
- # used as fallback echo
- shift
- cat <&2
- echo "Fatal configuration error. See the $PACKAGE docs for more information." 1>&2
- exit 1
-fi
-
-if test "$build_libtool_libs" != yes && test "$build_old_libs" != yes; then
- echo "$modename: not configured to build any kind of library" 1>&2
- echo "Fatal configuration error. See the $PACKAGE docs for more information." 1>&2
- exit 1
-fi
-
-# Global variables.
-mode=$default_mode
-nonopt=
-prev=
-prevopt=
-run=
-show="$echo"
-show_help=
-execute_dlfiles=
-lo2o="s/\\.lo\$/.${objext}/"
-o2lo="s/\\.${objext}\$/.lo/"
-
-# Parse our command line options once, thoroughly.
-while test $# -gt 0
-do
- arg="$1"
- shift
-
- case "$arg" in
- -*=*) optarg=`$echo "X$arg" | $Xsed -e 's/[-_a-zA-Z0-9]*=//'` ;;
- *) optarg= ;;
- esac
-
- # If the previous option needs an argument, assign it.
- if test -n "$prev"; then
- case "$prev" in
- execute_dlfiles)
- eval "$prev=\"\$$prev \$arg\""
- ;;
- *)
- eval "$prev=\$arg"
- ;;
- esac
-
- prev=
- prevopt=
- continue
- fi
-
- # Have we seen a non-optional argument yet?
- case "$arg" in
- --help)
- show_help=yes
- ;;
-
- --version)
- echo "$PROGRAM (GNU $PACKAGE) $VERSION$TIMESTAMP"
- exit 0
- ;;
-
- --config)
- sed -e '1,/^### BEGIN LIBTOOL CONFIG/d' -e '/^### END LIBTOOL CONFIG/,$d' $0
- exit 0
- ;;
-
- --debug)
- echo "$progname: enabling shell trace mode"
- set -x
- ;;
-
- --dry-run | -n)
- run=:
- ;;
-
- --features)
- echo "host: $host"
- if test "$build_libtool_libs" = yes; then
- echo "enable shared libraries"
- else
- echo "disable shared libraries"
- fi
- if test "$build_old_libs" = yes; then
- echo "enable static libraries"
- else
- echo "disable static libraries"
- fi
- exit 0
- ;;
-
- --finish) mode="finish" ;;
-
- --mode) prevopt="--mode" prev=mode ;;
- --mode=*) mode="$optarg" ;;
-
- --quiet | --silent)
- show=:
- ;;
-
- -dlopen)
- prevopt="-dlopen"
- prev=execute_dlfiles
- ;;
-
- -*)
- $echo "$modename: unrecognized option \`$arg'" 1>&2
- $echo "$help" 1>&2
- exit 1
- ;;
-
- *)
- nonopt="$arg"
- break
- ;;
- esac
-done
-
-if test -n "$prevopt"; then
- $echo "$modename: option \`$prevopt' requires an argument" 1>&2
- $echo "$help" 1>&2
- exit 1
-fi
-
-if test -z "$show_help"; then
-
- # Infer the operation mode.
- if test -z "$mode"; then
- case "$nonopt" in
- *cc | *++ | gcc* | *-gcc*)
- mode=link
- for arg
- do
- case "$arg" in
- -c)
- mode=compile
- break
- ;;
- esac
- done
- ;;
- *db | *dbx | *strace | *truss)
- mode=execute
- ;;
- *install*|cp|mv)
- mode=install
- ;;
- *rm)
- mode=uninstall
- ;;
- *)
- # If we have no mode, but dlfiles were specified, then do execute mode.
- test -n "$execute_dlfiles" && mode=execute
-
- # Just use the default operation mode.
- if test -z "$mode"; then
- if test -n "$nonopt"; then
- $echo "$modename: warning: cannot infer operation mode from \`$nonopt'" 1>&2
- else
- $echo "$modename: warning: cannot infer operation mode without MODE-ARGS" 1>&2
- fi
- fi
- ;;
- esac
- fi
-
- # Only execute mode is allowed to have -dlopen flags.
- if test -n "$execute_dlfiles" && test "$mode" != execute; then
- $echo "$modename: unrecognized option \`-dlopen'" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- # Change the help message to a mode-specific one.
- generic_help="$help"
- help="Try \`$modename --help --mode=$mode' for more information."
-
- # These modes are in order of execution frequency so that they run quickly.
- case "$mode" in
- # libtool compile mode
- compile)
- modename="$modename: compile"
- # Get the compilation command and the source file.
- base_compile=
- lastarg=
- srcfile="$nonopt"
- suppress_output=
-
- user_target=no
- for arg
- do
- # Accept any command-line options.
- case "$arg" in
- -o)
- if test "$user_target" != "no"; then
- $echo "$modename: you cannot specify \`-o' more than once" 1>&2
- exit 1
- fi
- user_target=next
- ;;
-
- -static)
- build_old_libs=yes
- continue
- ;;
- esac
-
- case "$user_target" in
- next)
- # The next one is the -o target name
- user_target=yes
- continue
- ;;
- yes)
- # We got the output file
- user_target=set
- libobj="$arg"
- continue
- ;;
- esac
-
- # Accept the current argument as the source file.
- lastarg="$srcfile"
- srcfile="$arg"
-
- # Aesthetically quote the previous argument.
-
- # Backslashify any backslashes, double quotes, and dollar signs.
- # These are the only characters that are still specially
- # interpreted inside of double-quoted scrings.
- lastarg=`$echo "X$lastarg" | $Xsed -e "$sed_quote_subst"`
-
- # Double-quote args containing other shell metacharacters.
- # Many Bourne shells cannot handle close brackets correctly in scan
- # sets, so we specify it separately.
- case "$lastarg" in
- *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*)
- lastarg="\"$lastarg\""
- ;;
- esac
-
- # Add the previous argument to base_compile.
- if test -z "$base_compile"; then
- base_compile="$lastarg"
- else
- base_compile="$base_compile $lastarg"
- fi
- done
-
- case "$user_target" in
- set)
- ;;
- no)
- # Get the name of the library object.
- libobj=`$echo "X$srcfile" | $Xsed -e 's%^.*/%%'`
- ;;
- *)
- $echo "$modename: you must specify a target with \`-o'" 1>&2
- exit 1
- ;;
- esac
-
- # Recognize several different file suffixes.
- # If the user specifies -o file.o, it is replaced with file.lo
- xform='[cCFSfmso]'
- case "$libobj" in
- *.ada) xform=ada ;;
- *.adb) xform=adb ;;
- *.ads) xform=ads ;;
- *.asm) xform=asm ;;
- *.c++) xform=c++ ;;
- *.cc) xform=cc ;;
- *.cpp) xform=cpp ;;
- *.cxx) xform=cxx ;;
- *.f90) xform=f90 ;;
- *.for) xform=for ;;
- esac
-
- libobj=`$echo "X$libobj" | $Xsed -e "s/\.$xform$/.lo/"`
-
- case "$libobj" in
- *.lo) obj=`$echo "X$libobj" | $Xsed -e "$lo2o"` ;;
- *)
- $echo "$modename: cannot determine name of library object from \`$libobj'" 1>&2
- exit 1
- ;;
- esac
-
- if test -z "$base_compile"; then
- $echo "$modename: you must specify a compilation command" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- # Delete any leftover library objects.
- if test "$build_old_libs" = yes; then
- removelist="$obj $libobj"
- else
- removelist="$libobj"
- fi
-
- $run $rm $removelist
- trap "$run $rm $removelist; exit 1" 1 2 15
-
- # Calculate the filename of the output object if compiler does
- # not support -o with -c
- if test "$compiler_c_o" = no; then
- output_obj=`$echo "X$srcfile" | $Xsed -e 's%^.*/%%' -e 's%\..*$%%'`.${objext}
- lockfile="$output_obj.lock"
- removelist="$removelist $output_obj $lockfile"
- trap "$run $rm $removelist; exit 1" 1 2 15
- else
- need_locks=no
- lockfile=
- fi
-
- # Lock this critical section if it is needed
- # We use this script file to make the link, it avoids creating a new file
- if test "$need_locks" = yes; then
- until ln "$0" "$lockfile" 2>/dev/null; do
- $show "Waiting for $lockfile to be removed"
- sleep 2
- done
- elif test "$need_locks" = warn; then
- if test -f "$lockfile"; then
- echo "\
-*** ERROR, $lockfile exists and contains:
-`cat $lockfile 2>/dev/null`
-
-This indicates that another process is trying to use the same
-temporary object file, and libtool could not work around it because
-your compiler does not support \`-c' and \`-o' together. If you
-repeat this compilation, it may succeed, by chance, but you had better
-avoid parallel builds (make -j) in this platform, or get a better
-compiler."
-
- $run $rm $removelist
- exit 1
- fi
- echo $srcfile > "$lockfile"
- fi
-
- if test -n "$fix_srcfile_path"; then
- eval srcfile=\"$fix_srcfile_path\"
- fi
-
- # Only build a PIC object if we are building libtool libraries.
- if test "$build_libtool_libs" = yes; then
- # Without this assignment, base_compile gets emptied.
- fbsd_hideous_sh_bug=$base_compile
-
- # All platforms use -DPIC, to notify preprocessed assembler code.
- command="$base_compile $srcfile $pic_flag -DPIC"
- if test "$build_old_libs" = yes; then
- lo_libobj="$libobj"
- dir=`$echo "X$libobj" | $Xsed -e 's%/[^/]*$%%'`
- if test "X$dir" = "X$libobj"; then
- dir="$objdir"
- else
- dir="$dir/$objdir"
- fi
- libobj="$dir/"`$echo "X$libobj" | $Xsed -e 's%^.*/%%'`
-
- if test -d "$dir"; then
- $show "$rm $libobj"
- $run $rm $libobj
- else
- $show "$mkdir $dir"
- $run $mkdir $dir
- status=$?
- if test $status -ne 0 && test ! -d $dir; then
- exit $status
- fi
- fi
- fi
- if test "$compiler_o_lo" = yes; then
- output_obj="$libobj"
- command="$command -o $output_obj"
- elif test "$compiler_c_o" = yes; then
- output_obj="$obj"
- command="$command -o $output_obj"
- fi
-
- $run $rm "$output_obj"
- $show "$command"
- if $run eval "$command"; then :
- else
- test -n "$output_obj" && $run $rm $removelist
- exit 1
- fi
-
- if test "$need_locks" = warn &&
- test x"`cat $lockfile 2>/dev/null`" != x"$srcfile"; then
- echo "\
-*** ERROR, $lockfile contains:
-`cat $lockfile 2>/dev/null`
-
-but it should contain:
-$srcfile
-
-This indicates that another process is trying to use the same
-temporary object file, and libtool could not work around it because
-your compiler does not support \`-c' and \`-o' together. If you
-repeat this compilation, it may succeed, by chance, but you had better
-avoid parallel builds (make -j) in this platform, or get a better
-compiler."
-
- $run $rm $removelist
- exit 1
- fi
-
- # Just move the object if needed, then go on to compile the next one
- if test x"$output_obj" != x"$libobj"; then
- $show "$mv $output_obj $libobj"
- if $run $mv $output_obj $libobj; then :
- else
- error=$?
- $run $rm $removelist
- exit $error
- fi
- fi
-
- # If we have no pic_flag, then copy the object into place and finish.
- if test -z "$pic_flag" && test "$build_old_libs" = yes; then
- # Rename the .lo from within objdir to obj
- if test -f $obj; then
- $show $rm $obj
- $run $rm $obj
- fi
-
- $show "$mv $libobj $obj"
- if $run $mv $libobj $obj; then :
- else
- error=$?
- $run $rm $removelist
- exit $error
- fi
-
- xdir=`$echo "X$obj" | $Xsed -e 's%/[^/]*$%%'`
- if test "X$xdir" = "X$obj"; then
- xdir="."
- else
- xdir="$xdir"
- fi
- baseobj=`$echo "X$obj" | $Xsed -e "s%.*/%%"`
- libobj=`$echo "X$baseobj" | $Xsed -e "$o2lo"`
- # Now arrange that obj and lo_libobj become the same file
- $show "(cd $xdir && $LN_S $baseobj $libobj)"
- if $run eval '(cd $xdir && $LN_S $baseobj $libobj)'; then
- exit 0
- else
- error=$?
- $run $rm $removelist
- exit $error
- fi
- fi
-
- # Allow error messages only from the first compilation.
- suppress_output=' >/dev/null 2>&1'
- fi
-
- # Only build a position-dependent object if we build old libraries.
- if test "$build_old_libs" = yes; then
- command="$base_compile $srcfile"
- if test "$compiler_c_o" = yes; then
- command="$command -o $obj"
- output_obj="$obj"
- fi
-
- # Suppress compiler output if we already did a PIC compilation.
- command="$command$suppress_output"
- $run $rm "$output_obj"
- $show "$command"
- if $run eval "$command"; then :
- else
- $run $rm $removelist
- exit 1
- fi
-
- if test "$need_locks" = warn &&
- test x"`cat $lockfile 2>/dev/null`" != x"$srcfile"; then
- echo "\
-*** ERROR, $lockfile contains:
-`cat $lockfile 2>/dev/null`
-
-but it should contain:
-$srcfile
-
-This indicates that another process is trying to use the same
-temporary object file, and libtool could not work around it because
-your compiler does not support \`-c' and \`-o' together. If you
-repeat this compilation, it may succeed, by chance, but you had better
-avoid parallel builds (make -j) in this platform, or get a better
-compiler."
-
- $run $rm $removelist
- exit 1
- fi
-
- # Just move the object if needed
- if test x"$output_obj" != x"$obj"; then
- $show "$mv $output_obj $obj"
- if $run $mv $output_obj $obj; then :
- else
- error=$?
- $run $rm $removelist
- exit $error
- fi
- fi
-
- # Create an invalid libtool object if no PIC, so that we do not
- # accidentally link it into a program.
- if test "$build_libtool_libs" != yes; then
- $show "echo timestamp > $libobj"
- $run eval "echo timestamp > \$libobj" || exit $?
- else
- # Move the .lo from within objdir
- $show "$mv $libobj $lo_libobj"
- if $run $mv $libobj $lo_libobj; then :
- else
- error=$?
- $run $rm $removelist
- exit $error
- fi
- fi
- fi
-
- # Unlock the critical section if it was locked
- if test "$need_locks" != no; then
- $rm "$lockfile"
- fi
-
- exit 0
- ;;
-
- # libtool link mode
- link)
- modename="$modename: link"
- case "$host" in
- *-*-cygwin* | *-*-mingw* | *-*-os2*)
- # It is impossible to link a dll without this setting, and
- # we shouldn't force the makefile maintainer to figure out
- # which system we are compiling for in order to pass an extra
- # flag for every libtool invokation.
- # allow_undefined=no
-
- # FIXME: Unfortunately, there are problems with the above when trying
- # to make a dll which has undefined symbols, in which case not
- # even a static library is built. For now, we need to specify
- # -no-undefined on the libtool link line when we can be certain
- # that all symbols are satisfied, otherwise we get a static library.
- allow_undefined=yes
-
- # This is a source program that is used to create dlls on Windows
- # Don't remove nor modify the starting and closing comments
-# /* ltdll.c starts here */
-# #define WIN32_LEAN_AND_MEAN
-# #include
-# #undef WIN32_LEAN_AND_MEAN
-# #include
-#
-# #ifndef __CYGWIN__
-# # ifdef __CYGWIN32__
-# # define __CYGWIN__ __CYGWIN32__
-# # endif
-# #endif
-#
-# #ifdef __cplusplus
-# extern "C" {
-# #endif
-# BOOL APIENTRY DllMain (HINSTANCE hInst, DWORD reason, LPVOID reserved);
-# #ifdef __cplusplus
-# }
-# #endif
-#
-# #ifdef __CYGWIN__
-# #include
-# DECLARE_CYGWIN_DLL( DllMain );
-# #endif
-# HINSTANCE __hDllInstance_base;
-#
-# BOOL APIENTRY
-# DllMain (HINSTANCE hInst, DWORD reason, LPVOID reserved)
-# {
-# __hDllInstance_base = hInst;
-# return TRUE;
-# }
-# /* ltdll.c ends here */
- # This is a source program that is used to create import libraries
- # on Windows for dlls which lack them. Don't remove nor modify the
- # starting and closing comments
-# /* impgen.c starts here */
-# /* Copyright (C) 1999 Free Software Foundation, Inc.
-#
-# This file is part of GNU libtool.
-#
-# This program is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-# */
-#
-# #include /* for printf() */
-# #include /* for open(), lseek(), read() */
-# #include /* for O_RDONLY, O_BINARY */
-# #include /* for strdup() */
-#
-# static unsigned int
-# pe_get16 (fd, offset)
-# int fd;
-# int offset;
-# {
-# unsigned char b[2];
-# lseek (fd, offset, SEEK_SET);
-# read (fd, b, 2);
-# return b[0] + (b[1]<<8);
-# }
-#
-# static unsigned int
-# pe_get32 (fd, offset)
-# int fd;
-# int offset;
-# {
-# unsigned char b[4];
-# lseek (fd, offset, SEEK_SET);
-# read (fd, b, 4);
-# return b[0] + (b[1]<<8) + (b[2]<<16) + (b[3]<<24);
-# }
-#
-# static unsigned int
-# pe_as32 (ptr)
-# void *ptr;
-# {
-# unsigned char *b = ptr;
-# return b[0] + (b[1]<<8) + (b[2]<<16) + (b[3]<<24);
-# }
-#
-# int
-# main (argc, argv)
-# int argc;
-# char *argv[];
-# {
-# int dll;
-# unsigned long pe_header_offset, opthdr_ofs, num_entries, i;
-# unsigned long export_rva, export_size, nsections, secptr, expptr;
-# unsigned long name_rvas, nexp;
-# unsigned char *expdata, *erva;
-# char *filename, *dll_name;
-#
-# filename = argv[1];
-#
-# dll = open(filename, O_RDONLY|O_BINARY);
-# if (!dll)
-# return 1;
-#
-# dll_name = filename;
-#
-# for (i=0; filename[i]; i++)
-# if (filename[i] == '/' || filename[i] == '\\' || filename[i] == ':')
-# dll_name = filename + i +1;
-#
-# pe_header_offset = pe_get32 (dll, 0x3c);
-# opthdr_ofs = pe_header_offset + 4 + 20;
-# num_entries = pe_get32 (dll, opthdr_ofs + 92);
-#
-# if (num_entries < 1) /* no exports */
-# return 1;
-#
-# export_rva = pe_get32 (dll, opthdr_ofs + 96);
-# export_size = pe_get32 (dll, opthdr_ofs + 100);
-# nsections = pe_get16 (dll, pe_header_offset + 4 +2);
-# secptr = (pe_header_offset + 4 + 20 +
-# pe_get16 (dll, pe_header_offset + 4 + 16));
-#
-# expptr = 0;
-# for (i = 0; i < nsections; i++)
-# {
-# char sname[8];
-# unsigned long secptr1 = secptr + 40 * i;
-# unsigned long vaddr = pe_get32 (dll, secptr1 + 12);
-# unsigned long vsize = pe_get32 (dll, secptr1 + 16);
-# unsigned long fptr = pe_get32 (dll, secptr1 + 20);
-# lseek(dll, secptr1, SEEK_SET);
-# read(dll, sname, 8);
-# if (vaddr <= export_rva && vaddr+vsize > export_rva)
-# {
-# expptr = fptr + (export_rva - vaddr);
-# if (export_rva + export_size > vaddr + vsize)
-# export_size = vsize - (export_rva - vaddr);
-# break;
-# }
-# }
-#
-# expdata = (unsigned char*)malloc(export_size);
-# lseek (dll, expptr, SEEK_SET);
-# read (dll, expdata, export_size);
-# erva = expdata - export_rva;
-#
-# nexp = pe_as32 (expdata+24);
-# name_rvas = pe_as32 (expdata+32);
-#
-# printf ("EXPORTS\n");
-# for (i = 0; i&2
- fi
- if test -n "$link_static_flag"; then
- dlopen_self=$dlopen_self_static
- fi
- else
- if test -z "$pic_flag" && test -n "$link_static_flag"; then
- dlopen_self=$dlopen_self_static
- fi
- fi
- build_libtool_libs=no
- build_old_libs=yes
- prefer_static_libs=yes
- break
- ;;
- esac
- done
-
- # See if our shared archives depend on static archives.
- test -n "$old_archive_from_new_cmds" && build_old_libs=yes
-
- # Go through the arguments, transforming them on the way.
- while test $# -gt 0; do
- arg="$1"
- shift
-
- # If the previous option needs an argument, assign it.
- if test -n "$prev"; then
- case "$prev" in
- output)
- compile_command="$compile_command @OUTPUT@"
- finalize_command="$finalize_command @OUTPUT@"
- ;;
- esac
-
- case "$prev" in
- dlfiles|dlprefiles)
- if test "$preload" = no; then
- # Add the symbol object into the linking commands.
- compile_command="$compile_command @SYMFILE@"
- finalize_command="$finalize_command @SYMFILE@"
- preload=yes
- fi
- case "$arg" in
- *.la | *.lo) ;; # We handle these cases below.
- force)
- if test "$dlself" = no; then
- dlself=needless
- export_dynamic=yes
- fi
- prev=
- continue
- ;;
- self)
- if test "$prev" = dlprefiles; then
- dlself=yes
- elif test "$prev" = dlfiles && test "$dlopen_self" != yes; then
- dlself=yes
- else
- dlself=needless
- export_dynamic=yes
- fi
- prev=
- continue
- ;;
- *)
- if test "$prev" = dlfiles; then
- dlfiles="$dlfiles $arg"
- else
- dlprefiles="$dlprefiles $arg"
- fi
- prev=
- ;;
- esac
- ;;
- expsyms)
- export_symbols="$arg"
- if test ! -f "$arg"; then
- $echo "$modename: symbol file \`$arg' does not exist"
- exit 1
- fi
- prev=
- continue
- ;;
- expsyms_regex)
- export_symbols_regex="$arg"
- prev=
- continue
- ;;
- release)
- release="-$arg"
- prev=
- continue
- ;;
- rpath | xrpath)
- # We need an absolute path.
- case "$arg" in
- [\\/]* | [A-Za-z]:[\\/]*) ;;
- *)
- $echo "$modename: only absolute run-paths are allowed" 1>&2
- exit 1
- ;;
- esac
- if test "$prev" = rpath; then
- case "$rpath " in
- *" $arg "*) ;;
- *) rpath="$rpath $arg" ;;
- esac
- else
- case "$xrpath " in
- *" $arg "*) ;;
- *) xrpath="$xrpath $arg" ;;
- esac
- fi
- prev=
- continue
- ;;
- *)
- eval "$prev=\"\$arg\""
- prev=
- continue
- ;;
- esac
- fi
-
- prevarg="$arg"
-
- case "$arg" in
- -all-static)
- if test -n "$link_static_flag"; then
- compile_command="$compile_command $link_static_flag"
- finalize_command="$finalize_command $link_static_flag"
- fi
- continue
- ;;
-
- -allow-undefined)
- # FIXME: remove this flag sometime in the future.
- $echo "$modename: \`-allow-undefined' is deprecated because it is the default" 1>&2
- continue
- ;;
-
- -avoid-version)
- avoid_version=yes
- continue
- ;;
-
- -dlopen)
- prev=dlfiles
- continue
- ;;
-
- -dlpreopen)
- prev=dlprefiles
- continue
- ;;
-
- -export-dynamic)
- export_dynamic=yes
- continue
- ;;
-
- -export-symbols | -export-symbols-regex)
- if test -n "$export_symbols" || test -n "$export_symbols_regex"; then
- $echo "$modename: not more than one -exported-symbols argument allowed"
- exit 1
- fi
- if test "X$arg" = "X-export-symbols"; then
- prev=expsyms
- else
- prev=expsyms_regex
- fi
- continue
- ;;
-
- -L*)
- dir=`$echo "X$arg" | $Xsed -e 's/^-L//'`
- # We need an absolute path.
- case "$dir" in
- [\\/]* | [A-Za-z]:[\\/]*) ;;
- *)
- absdir=`cd "$dir" && pwd`
- if test -z "$absdir"; then
- $echo "$modename: warning: cannot determine absolute directory name of \`$dir'" 1>&2
- $echo "$modename: passing it literally to the linker, although it might fail" 1>&2
- absdir="$dir"
- fi
- dir="$absdir"
- ;;
- esac
- case " $deplibs " in
- *" $arg "*) ;;
- *) deplibs="$deplibs $arg";;
- esac
- case " $lib_search_path " in
- *" $dir "*) ;;
- *) lib_search_path="$lib_search_path $dir";;
- esac
- case "$host" in
- *-*-cygwin* | *-*-mingw* | *-*-os2*)
- dllsearchdir=`cd "$dir" && pwd || echo "$dir"`
- case ":$dllsearchpath:" in
- ::) dllsearchpath="$dllsearchdir";;
- *":$dllsearchdir:"*) ;;
- *) dllsearchpath="$dllsearchpath:$dllsearchdir";;
- esac
- ;;
- esac
- ;;
-
- -l*)
- if test "$arg" = "-lc"; then
- case "$host" in
- *-*-cygwin* | *-*-mingw* | *-*-os2* | *-*-beos*)
- # These systems don't actually have c library (as such)
- continue
- ;;
- esac
- elif test "$arg" = "-lm"; then
- case "$host" in
- *-*-cygwin* | *-*-beos*)
- # These systems don't actually have math library (as such)
- continue
- ;;
- esac
- fi
- deplibs="$deplibs $arg"
- ;;
-
- -module)
- module=yes
- continue
- ;;
-
- -no-undefined)
- allow_undefined=no
- continue
- ;;
-
- -o) prev=output ;;
-
- -release)
- prev=release
- continue
- ;;
-
- -rpath)
- prev=rpath
- continue
- ;;
-
- -R)
- prev=xrpath
- continue
- ;;
-
- -R*)
- dir=`$echo "X$arg" | $Xsed -e 's/^-R//'`
- # We need an absolute path.
- case "$dir" in
- [\\/]* | [A-Za-z]:[\\/]*) ;;
- *)
- $echo "$modename: only absolute run-paths are allowed" 1>&2
- exit 1
- ;;
- esac
- case "$xrpath " in
- *" $dir "*) ;;
- *) xrpath="$xrpath $dir" ;;
- esac
- continue
- ;;
-
- -static)
- # If we have no pic_flag, then this is the same as -all-static.
- if test -z "$pic_flag" && test -n "$link_static_flag"; then
- compile_command="$compile_command $link_static_flag"
- finalize_command="$finalize_command $link_static_flag"
- fi
- continue
- ;;
-
- -thread-safe)
- thread_safe=yes
- continue
- ;;
-
- -version-info)
- prev=vinfo
- continue
- ;;
-
- # Some other compiler flag.
- -* | +*)
- # Unknown arguments in both finalize_command and compile_command need
- # to be aesthetically quoted because they are evaled later.
- arg=`$echo "X$arg" | $Xsed -e "$sed_quote_subst"`
- case "$arg" in
- *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*)
- arg="\"$arg\""
- ;;
- esac
- ;;
-
- *.o | *.obj | *.a | *.lib)
- # A standard object.
- objs="$objs $arg"
- ;;
-
- *.lo)
- # A library object.
- if test "$prev" = dlfiles; then
- dlfiles="$dlfiles $arg"
- if test "$build_libtool_libs" = yes && test "$dlopen" = yes; then
- prev=
- continue
- else
- # If libtool objects are unsupported, then we need to preload.
- prev=dlprefiles
- fi
- fi
-
- if test "$prev" = dlprefiles; then
- # Preload the old-style object.
- dlprefiles="$dlprefiles "`$echo "X$arg" | $Xsed -e "$lo2o"`
- prev=
- fi
- libobjs="$libobjs $arg"
- ;;
-
- *.la)
- # A libtool-controlled library.
-
- dlname=
- libdir=
- library_names=
- old_library=
-
- # Check to see that this really is a libtool archive.
- if (sed -e '2q' $arg | egrep "^# Generated by .*$PACKAGE") >/dev/null 2>&1; then :
- else
- $echo "$modename: \`$arg' is not a valid libtool archive" 1>&2
- exit 1
- fi
-
- # If the library was installed with an old release of libtool,
- # it will not redefine variable installed.
- installed=yes
-
- # Read the .la file
- # If there is no directory component, then add one.
- case "$arg" in
- */* | *\\*) . $arg ;;
- *) . ./$arg ;;
- esac
-
- # Get the name of the library we link against.
- linklib=
- for l in $old_library $library_names; do
- linklib="$l"
- done
-
- if test -z "$linklib"; then
- $echo "$modename: cannot find name of link library for \`$arg'" 1>&2
- exit 1
- fi
-
- # Find the relevant object directory and library name.
- name=`$echo "X$arg" | $Xsed -e 's%^.*/%%' -e 's/\.la$//' -e 's/^lib//'`
-
- if test "X$installed" = Xyes; then
- dir="$libdir"
- else
- dir=`$echo "X$arg" | $Xsed -e 's%/[^/]*$%%'`
- if test "X$dir" = "X$arg"; then
- dir="$objdir"
- else
- dir="$dir/$objdir"
- fi
- fi
-
- if test -n "$dependency_libs"; then
- # Extract -R and -L from dependency_libs
- temp_deplibs=
- for deplib in $dependency_libs; do
- case "$deplib" in
- -R*) temp_xrpath=`$echo "X$deplib" | $Xsed -e 's/^-R//'`
- case " $rpath $xrpath " in
- *" $temp_xrpath "*) ;;
- *) xrpath="$xrpath $temp_xrpath";;
- esac;;
- -L*) case "$compile_command $temp_deplibs " in
- *" $deplib "*) ;;
- *) temp_deplibs="$temp_deplibs $deplib";;
- esac
- temp_dir=`$echo "X$deplib" | $Xsed -e 's/^-L//'`
- case " $lib_search_path " in
- *" $temp_dir "*) ;;
- *) lib_search_path="$lib_search_path $temp_dir";;
- esac
- ;;
- *) temp_deplibs="$temp_deplibs $deplib";;
- esac
- done
- dependency_libs="$temp_deplibs"
- fi
-
- if test -z "$libdir"; then
- # It is a libtool convenience library, so add in its objects.
- convenience="$convenience $dir/$old_library"
- old_convenience="$old_convenience $dir/$old_library"
- deplibs="$deplibs$dependency_libs"
- compile_command="$compile_command $dir/$old_library$dependency_libs"
- finalize_command="$finalize_command $dir/$old_library$dependency_libs"
- continue
- fi
-
- # This library was specified with -dlopen.
- if test "$prev" = dlfiles; then
- dlfiles="$dlfiles $arg"
- if test -z "$dlname" || test "$dlopen" != yes || test "$build_libtool_libs" = no; then
- # If there is no dlname, no dlopen support or we're linking statically,
- # we need to preload.
- prev=dlprefiles
- else
- # We should not create a dependency on this library, but we
- # may need any libraries it requires.
- compile_command="$compile_command$dependency_libs"
- finalize_command="$finalize_command$dependency_libs"
- prev=
- continue
- fi
- fi
-
- # The library was specified with -dlpreopen.
- if test "$prev" = dlprefiles; then
- # Prefer using a static library (so that no silly _DYNAMIC symbols
- # are required to link).
- if test -n "$old_library"; then
- dlprefiles="$dlprefiles $dir/$old_library"
- else
- dlprefiles="$dlprefiles $dir/$linklib"
- fi
- prev=
- fi
-
- if test -n "$library_names" &&
- { test "$prefer_static_libs" = no || test -z "$old_library"; }; then
- link_against_libtool_libs="$link_against_libtool_libs $arg"
- if test -n "$shlibpath_var"; then
- # Make sure the rpath contains only unique directories.
- case "$temp_rpath " in
- *" $dir "*) ;;
- *) temp_rpath="$temp_rpath $dir" ;;
- esac
- fi
-
- # We need an absolute path.
- case "$dir" in
- [\\/] | [A-Za-z]:[\\/]*) absdir="$dir" ;;
- *)
- absdir=`cd "$dir" && pwd`
- if test -z "$absdir"; then
- $echo "$modename: warning: cannot determine absolute directory name of \`$dir'" 1>&2
- $echo "$modename: passing it literally to the linker, although it might fail" 1>&2
- absdir="$dir"
- fi
- ;;
- esac
-
- # This is the magic to use -rpath.
- # Skip directories that are in the system default run-time
- # search path, unless they have been requested with -R.
- case " $sys_lib_dlsearch_path " in
- *" $absdir "*) ;;
- *)
- case "$compile_rpath " in
- *" $absdir "*) ;;
- *) compile_rpath="$compile_rpath $absdir"
- esac
- ;;
- esac
-
- case " $sys_lib_dlsearch_path " in
- *" $libdir "*) ;;
- *)
- case "$finalize_rpath " in
- *" $libdir "*) ;;
- *) finalize_rpath="$finalize_rpath $libdir"
- esac
- ;;
- esac
-
- lib_linked=yes
- case "$hardcode_action" in
- immediate | unsupported)
- if test "$hardcode_direct" = no; then
- compile_command="$compile_command $dir/$linklib"
- deplibs="$deplibs $dir/$linklib"
- case "$host" in
- *-*-cygwin* | *-*-mingw* | *-*-os2*)
- dllsearchdir=`cd "$dir" && pwd || echo "$dir"`
- if test -n "$dllsearchpath"; then
- dllsearchpath="$dllsearchpath:$dllsearchdir"
- else
- dllsearchpath="$dllsearchdir"
- fi
- ;;
- esac
- elif test "$hardcode_minus_L" = no; then
- case "$host" in
- *-*-sunos*)
- compile_shlibpath="$compile_shlibpath$dir:"
- ;;
- esac
- case "$compile_command " in
- *" -L$dir "*) ;;
- *) compile_command="$compile_command -L$dir";;
- esac
- compile_command="$compile_command -l$name"
- deplibs="$deplibs -L$dir -l$name"
- elif test "$hardcode_shlibpath_var" = no; then
- case ":$compile_shlibpath:" in
- *":$dir:"*) ;;
- *) compile_shlibpath="$compile_shlibpath$dir:";;
- esac
- compile_command="$compile_command -l$name"
- deplibs="$deplibs -l$name"
- else
- lib_linked=no
- fi
- ;;
-
- relink)
- if test "$hardcode_direct" = yes; then
- compile_command="$compile_command $absdir/$linklib"
- deplibs="$deplibs $absdir/$linklib"
- elif test "$hardcode_minus_L" = yes; then
- case "$compile_command " in
- *" -L$absdir "*) ;;
- *) compile_command="$compile_command -L$absdir";;
- esac
- compile_command="$compile_command -l$name"
- deplibs="$deplibs -L$absdir -l$name"
- elif test "$hardcode_shlibpath_var" = yes; then
- case ":$compile_shlibpath:" in
- *":$absdir:"*) ;;
- *) compile_shlibpath="$compile_shlibpath$absdir:";;
- esac
- compile_command="$compile_command -l$name"
- deplibs="$deplibs -l$name"
- else
- lib_linked=no
- fi
- ;;
-
- *)
- lib_linked=no
- ;;
- esac
-
- if test "$lib_linked" != yes; then
- $echo "$modename: configuration error: unsupported hardcode properties"
- exit 1
- fi
-
- # Finalize command for both is simple: just hardcode it.
- if test "$hardcode_direct" = yes; then
- finalize_command="$finalize_command $libdir/$linklib"
- elif test "$hardcode_minus_L" = yes; then
- case "$finalize_command " in
- *" -L$libdir "*) ;;
- *) finalize_command="$finalize_command -L$libdir";;
- esac
- finalize_command="$finalize_command -l$name"
- elif test "$hardcode_shlibpath_var" = yes; then
- case ":$finalize_shlibpath:" in
- *":$libdir:"*) ;;
- *) finalize_shlibpath="$finalize_shlibpath$libdir:";;
- esac
- finalize_command="$finalize_command -l$name"
- else
- # We cannot seem to hardcode it, guess we'll fake it.
- case "$finalize_command " in
- *" -L$dir "*) ;;
- *) finalize_command="$finalize_command -L$libdir";;
- esac
- finalize_command="$finalize_command -l$name"
- fi
- else
- # Transform directly to old archives if we don't build new libraries.
- if test -n "$pic_flag" && test -z "$old_library"; then
- $echo "$modename: cannot find static library for \`$arg'" 1>&2
- exit 1
- fi
-
- # Here we assume that one of hardcode_direct or hardcode_minus_L
- # is not unsupported. This is valid on all known static and
- # shared platforms.
- if test "$hardcode_direct" != unsupported; then
- test -n "$old_library" && linklib="$old_library"
- compile_command="$compile_command $dir/$linklib"
- finalize_command="$finalize_command $dir/$linklib"
- else
- case "$compile_command " in
- *" -L$dir "*) ;;
- *) compile_command="$compile_command -L$dir";;
- esac
- compile_command="$compile_command -l$name"
- case "$finalize_command " in
- *" -L$dir "*) ;;
- *) finalize_command="$finalize_command -L$dir";;
- esac
- finalize_command="$finalize_command -l$name"
- fi
- fi
-
- # Add in any libraries that this one depends upon.
- compile_command="$compile_command$dependency_libs"
- finalize_command="$finalize_command$dependency_libs"
- continue
- ;;
-
- # Some other compiler argument.
- *)
- # Unknown arguments in both finalize_command and compile_command need
- # to be aesthetically quoted because they are evaled later.
- arg=`$echo "X$arg" | $Xsed -e "$sed_quote_subst"`
- case "$arg" in
- *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*)
- arg="\"$arg\""
- ;;
- esac
- ;;
- esac
-
- # Now actually substitute the argument into the commands.
- if test -n "$arg"; then
- compile_command="$compile_command $arg"
- finalize_command="$finalize_command $arg"
- fi
- done
-
- if test -n "$prev"; then
- $echo "$modename: the \`$prevarg' option requires an argument" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- if test "$export_dynamic" = yes && test -n "$export_dynamic_flag_spec"; then
- eval arg=\"$export_dynamic_flag_spec\"
- compile_command="$compile_command $arg"
- finalize_command="$finalize_command $arg"
- fi
-
- oldlibs=
- # calculate the name of the file, without its directory
- outputname=`$echo "X$output" | $Xsed -e 's%^.*/%%'`
- libobjs_save="$libobjs"
-
- case "$output" in
- "")
- $echo "$modename: you must specify an output file" 1>&2
- $echo "$help" 1>&2
- exit 1
- ;;
-
- *.a | *.lib)
- if test -n "$link_against_libtool_libs"; then
- $echo "$modename: error: cannot link libtool libraries into archives" 1>&2
- exit 1
- fi
-
- if test -n "$deplibs"; then
- $echo "$modename: warning: \`-l' and \`-L' are ignored for archives" 1>&2
- fi
-
- if test -n "$dlfiles$dlprefiles" || test "$dlself" != no; then
- $echo "$modename: warning: \`-dlopen' is ignored for archives" 1>&2
- fi
-
- if test -n "$rpath"; then
- $echo "$modename: warning: \`-rpath' is ignored for archives" 1>&2
- fi
-
- if test -n "$xrpath"; then
- $echo "$modename: warning: \`-R' is ignored for archives" 1>&2
- fi
-
- if test -n "$vinfo"; then
- $echo "$modename: warning: \`-version-info' is ignored for archives" 1>&2
- fi
-
- if test -n "$release"; then
- $echo "$modename: warning: \`-release' is ignored for archives" 1>&2
- fi
-
- if test -n "$export_symbols" || test -n "$export_symbols_regex"; then
- $echo "$modename: warning: \`-export-symbols' is ignored for archives" 1>&2
- fi
-
- # Now set the variables for building old libraries.
- build_libtool_libs=no
- oldlibs="$output"
- ;;
-
- *.la)
- # Make sure we only generate libraries of the form `libNAME.la'.
- case "$outputname" in
- lib*)
- name=`$echo "X$outputname" | $Xsed -e 's/\.la$//' -e 's/^lib//'`
- eval libname=\"$libname_spec\"
- ;;
- *)
- if test "$module" = no; then
- $echo "$modename: libtool library \`$output' must begin with \`lib'" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
- if test "$need_lib_prefix" != no; then
- # Add the "lib" prefix for modules if required
- name=`$echo "X$outputname" | $Xsed -e 's/\.la$//'`
- eval libname=\"$libname_spec\"
- else
- libname=`$echo "X$outputname" | $Xsed -e 's/\.la$//'`
- fi
- ;;
- esac
-
- output_objdir=`$echo "X$output" | $Xsed -e 's%/[^/]*$%%'`
- if test "X$output_objdir" = "X$output"; then
- output_objdir="$objdir"
- else
- output_objdir="$output_objdir/$objdir"
- fi
-
- if test -n "$objs"; then
- $echo "$modename: cannot build libtool library \`$output' from non-libtool objects:$objs" 2>&1
- exit 1
- fi
-
- # How the heck are we supposed to write a wrapper for a shared library?
- if test -n "$link_against_libtool_libs"; then
- $echo "$modename: error: cannot link shared libraries into libtool libraries" 1>&2
- exit 1
- fi
-
- if test -n "$dlfiles$dlprefiles" || test "$dlself" != no; then
- $echo "$modename: warning: \`-dlopen' is ignored for libtool libraries" 1>&2
- fi
-
- set dummy $rpath
- if test $# -gt 2; then
- $echo "$modename: warning: ignoring multiple \`-rpath's for a libtool library" 1>&2
- fi
- install_libdir="$2"
-
- oldlibs=
- if test -z "$rpath"; then
- if test "$build_libtool_libs" = yes; then
- # Building a libtool convenience library.
- libext=al
- oldlibs="$output_objdir/$libname.$libext $oldlibs"
- build_libtool_libs=convenience
- build_old_libs=yes
- fi
- dependency_libs="$deplibs"
-
- if test -n "$vinfo"; then
- $echo "$modename: warning: \`-version-info' is ignored for convenience libraries" 1>&2
- fi
-
- if test -n "$release"; then
- $echo "$modename: warning: \`-release' is ignored for convenience libraries" 1>&2
- fi
- else
-
- # Parse the version information argument.
- IFS="${IFS= }"; save_ifs="$IFS"; IFS=':'
- set dummy $vinfo 0 0 0
- IFS="$save_ifs"
-
- if test -n "$8"; then
- $echo "$modename: too many parameters to \`-version-info'" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- current="$2"
- revision="$3"
- age="$4"
-
- # Check that each of the things are valid numbers.
- case "$current" in
- 0 | [1-9] | [1-9][0-9]*) ;;
- *)
- $echo "$modename: CURRENT \`$current' is not a nonnegative integer" 1>&2
- $echo "$modename: \`$vinfo' is not valid version information" 1>&2
- exit 1
- ;;
- esac
-
- case "$revision" in
- 0 | [1-9] | [1-9][0-9]*) ;;
- *)
- $echo "$modename: REVISION \`$revision' is not a nonnegative integer" 1>&2
- $echo "$modename: \`$vinfo' is not valid version information" 1>&2
- exit 1
- ;;
- esac
-
- case "$age" in
- 0 | [1-9] | [1-9][0-9]*) ;;
- *)
- $echo "$modename: AGE \`$age' is not a nonnegative integer" 1>&2
- $echo "$modename: \`$vinfo' is not valid version information" 1>&2
- exit 1
- ;;
- esac
-
- if test $age -gt $current; then
- $echo "$modename: AGE \`$age' is greater than the current interface number \`$current'" 1>&2
- $echo "$modename: \`$vinfo' is not valid version information" 1>&2
- exit 1
- fi
-
- # Calculate the version variables.
- major=
- versuffix=
- verstring=
- case "$version_type" in
- none) ;;
-
- irix)
- major=`expr $current - $age + 1`
- versuffix="$major.$revision"
- verstring="sgi$major.$revision"
-
- # Add in all the interfaces that we are compatible with.
- loop=$revision
- while test $loop != 0; do
- iface=`expr $revision - $loop`
- loop=`expr $loop - 1`
- verstring="sgi$major.$iface:$verstring"
- done
- ;;
-
- linux)
- major=.`expr $current - $age`
- versuffix="$major.$age.$revision"
- ;;
-
- osf)
- major=`expr $current - $age`
- versuffix=".$current.$age.$revision"
- verstring="$current.$age.$revision"
-
- # Add in all the interfaces that we are compatible with.
- loop=$age
- while test $loop != 0; do
- iface=`expr $current - $loop`
- loop=`expr $loop - 1`
- verstring="$verstring:${iface}.0"
- done
-
- # Make executables depend on our current version.
- verstring="$verstring:${current}.0"
- ;;
-
- sunos)
- major=".$current"
- versuffix=".$current.$revision"
- ;;
-
- freebsd-aout)
- major=".$current"
- versuffix=".$current.$revision";
- ;;
-
- freebsd-elf)
- major=".$current"
- versuffix=".$current";
- ;;
-
- windows)
- # Like Linux, but with '-' rather than '.', since we only
- # want one extension on Windows 95.
- major=`expr $current - $age`
- versuffix="-$major-$age-$revision"
- ;;
-
- *)
- $echo "$modename: unknown library version type \`$version_type'" 1>&2
- echo "Fatal configuration error. See the $PACKAGE docs for more information." 1>&2
- exit 1
- ;;
- esac
-
- # Clear the version info if we defaulted, and they specified a release.
- if test -z "$vinfo" && test -n "$release"; then
- major=
- verstring="0.0"
- if test "$need_version" = no; then
- versuffix=
- else
- versuffix=".0.0"
- fi
- fi
-
- # Remove version info from name if versioning should be avoided
- if test "$avoid_version" = yes && test "$need_version" = no; then
- major=
- versuffix=
- verstring=""
- fi
-
- # Check to see if the archive will have undefined symbols.
- if test "$allow_undefined" = yes; then
- if test "$allow_undefined_flag" = unsupported; then
- $echo "$modename: warning: undefined symbols not allowed in $host shared libraries" 1>&2
- build_libtool_libs=no
- build_old_libs=yes
- fi
- else
- # Don't allow undefined symbols.
- allow_undefined_flag="$no_undefined_flag"
- fi
-
- dependency_libs="$deplibs"
- case "$host" in
- *-*-cygwin* | *-*-mingw* | *-*-os2* | *-*-beos*)
- # these systems don't actually have a c library (as such)!
- ;;
- *)
- # Add libc to deplibs on all other systems.
- deplibs="$deplibs -lc"
- ;;
- esac
- fi
-
- # Create the output directory, or remove our outputs if we need to.
- if test -d $output_objdir; then
- $show "${rm}r $output_objdir/$outputname $output_objdir/$libname.* $output_objdir/${libname}${release}.*"
- $run ${rm}r $output_objdir/$outputname $output_objdir/$libname.* $output_objdir/${libname}${release}.*
- else
- $show "$mkdir $output_objdir"
- $run $mkdir $output_objdir
- status=$?
- if test $status -ne 0 && test ! -d $output_objdir; then
- exit $status
- fi
- fi
-
- # Now set the variables for building old libraries.
- if test "$build_old_libs" = yes && test "$build_libtool_libs" != convenience ; then
- oldlibs="$oldlibs $output_objdir/$libname.$libext"
-
- # Transform .lo files to .o files.
- oldobjs="$objs "`$echo "X$libobjs" | $SP2NL | $Xsed -e '/\.'${libext}'$/d' -e "$lo2o" | $NL2SP`
- fi
-
- if test "$build_libtool_libs" = yes; then
- # Transform deplibs into only deplibs that can be linked in shared.
- name_save=$name
- libname_save=$libname
- release_save=$release
- versuffix_save=$versuffix
- major_save=$major
- # I'm not sure if I'm treating the release correctly. I think
- # release should show up in the -l (ie -lgmp5) so we don't want to
- # add it in twice. Is that correct?
- release=""
- versuffix=""
- major=""
- newdeplibs=
- droppeddeps=no
- case "$deplibs_check_method" in
- pass_all)
- # Don't check for shared/static. Everything works.
- # This might be a little naive. We might want to check
- # whether the library exists or not. But this is on
- # osf3 & osf4 and I'm not really sure... Just
- # implementing what was already the behaviour.
- newdeplibs=$deplibs
- ;;
- test_compile)
- # This code stresses the "libraries are programs" paradigm to its
- # limits. Maybe even breaks it. We compile a program, linking it
- # against the deplibs as a proxy for the library. Then we can check
- # whether they linked in statically or dynamically with ldd.
- $rm conftest.c
- cat > conftest.c </dev/null`
- for potent_lib in $potential_libs; do
- # Follow soft links.
- if ls -lLd "$potent_lib" 2>/dev/null \
- | grep " -> " >/dev/null; then
- continue
- fi
- # The statement above tries to avoid entering an
- # endless loop below, in case of cyclic links.
- # We might still enter an endless loop, since a link
- # loop can be closed while we follow links,
- # but so what?
- potlib="$potent_lib"
- while test -h "$potlib" 2>/dev/null; do
- potliblink=`ls -ld $potlib | sed 's/.* -> //'`
- case "$potliblink" in
- [\\/]* | [A-Za-z]:[\\/]*) potlib="$potliblink";;
- *) potlib=`$echo "X$potlib" | $Xsed -e 's,[^/]*$,,'`"$potliblink";;
- esac
- done
- if eval $file_magic_cmd \"\$potlib\" 2>/dev/null \
- | sed 10q \
- | egrep "$file_magic_regex" > /dev/null; then
- newdeplibs="$newdeplibs $a_deplib"
- a_deplib=""
- break 2
- fi
- done
- done
- if test -n "$a_deplib" ; then
- droppeddeps=yes
- echo
- echo "*** Warning: This library needs some functionality provided by $a_deplib."
- echo "*** I have the capability to make that library automatically link in when"
- echo "*** you link to this library. But I can only do this if you have a"
- echo "*** shared version of the library, which you do not appear to have."
- fi
- else
- # Add a -L argument.
- newdeplibs="$newdeplibs $a_deplib"
- fi
- done # Gone through all deplibs.
- ;;
- none | unknown | *)
- newdeplibs=""
- if $echo "X $deplibs" | $Xsed -e 's/ -lc$//' \
- -e 's/ -[LR][^ ]*//g' -e 's/[ ]//g' |
- grep . >/dev/null; then
- echo
- if test "X$deplibs_check_method" = "Xnone"; then
- echo "*** Warning: inter-library dependencies are not supported in this platform."
- else
- echo "*** Warning: inter-library dependencies are not known to be supported."
- fi
- echo "*** All declared inter-library dependencies are being dropped."
- droppeddeps=yes
- fi
- ;;
- esac
- versuffix=$versuffix_save
- major=$major_save
- release=$release_save
- libname=$libname_save
- name=$name_save
-
- if test "$droppeddeps" = yes; then
- if test "$module" = yes; then
- echo
- echo "*** Warning: libtool could not satisfy all declared inter-library"
- echo "*** dependencies of module $libname. Therefore, libtool will create"
- echo "*** a static module, that should work as long as the dlopening"
- echo "*** application is linked with the -dlopen flag."
- if test -z "$global_symbol_pipe"; then
- echo
- echo "*** However, this would only work if libtool was able to extract symbol"
- echo "*** lists from a program, using \`nm' or equivalent, but libtool could"
- echo "*** not find such a program. So, this module is probably useless."
- echo "*** \`nm' from GNU binutils and a full rebuild may help."
- fi
- if test "$build_old_libs" = no; then
- oldlibs="$output_objdir/$libname.$libext"
- build_libtool_libs=module
- build_old_libs=yes
- else
- build_libtool_libs=no
- fi
- else
- echo "*** The inter-library dependencies that have been dropped here will be"
- echo "*** automatically added whenever a program is linked with this library"
- echo "*** or is declared to -dlopen it."
- fi
- fi
- # Done checking deplibs!
- deplibs=$newdeplibs
- fi
-
- # All the library-specific variables (install_libdir is set above).
- library_names=
- old_library=
- dlname=
-
- # Test again, we may have decided not to build it any more
- if test "$build_libtool_libs" = yes; then
- # Get the real and link names of the library.
- eval library_names=\"$library_names_spec\"
- set dummy $library_names
- realname="$2"
- shift; shift
-
- if test -n "$soname_spec"; then
- eval soname=\"$soname_spec\"
- else
- soname="$realname"
- fi
-
- lib="$output_objdir/$realname"
- for link
- do
- linknames="$linknames $link"
- done
-
- # Ensure that we have .o objects for linkers which dislike .lo
- # (e.g. aix) in case we are running --disable-static
- for obj in $libobjs; do
- xdir=`$echo "X$obj" | $Xsed -e 's%/[^/]*$%%'`
- if test "X$xdir" = "X$obj"; then
- xdir="."
- else
- xdir="$xdir"
- fi
- baseobj=`$echo "X$obj" | $Xsed -e 's%^.*/%%'`
- oldobj=`$echo "X$baseobj" | $Xsed -e "$lo2o"`
- if test ! -f $xdir/$oldobj; then
- $show "(cd $xdir && ${LN_S} $baseobj $oldobj)"
- $run eval '(cd $xdir && ${LN_S} $baseobj $oldobj)' || exit $?
- fi
- done
-
- # Use standard objects if they are pic
- test -z "$pic_flag" && libobjs=`$echo "X$libobjs" | $SP2NL | $Xsed -e "$lo2o" | $NL2SP`
-
- # Prepare the list of exported symbols
- if test -z "$export_symbols"; then
- if test "$always_export_symbols" = yes || test -n "$export_symbols_regex"; then
- $show "generating symbol list for \`$libname.la'"
- export_symbols="$output_objdir/$libname.exp"
- $run $rm $export_symbols
- eval cmds=\"$export_symbols_cmds\"
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd" || exit $?
- done
- IFS="$save_ifs"
- if test -n "$export_symbols_regex"; then
- $show "egrep -e \"$export_symbols_regex\" \"$export_symbols\" > \"${export_symbols}T\""
- $run eval 'egrep -e "$export_symbols_regex" "$export_symbols" > "${export_symbols}T"'
- $show "$mv \"${export_symbols}T\" \"$export_symbols\""
- $run eval '$mv "${export_symbols}T" "$export_symbols"'
- fi
- fi
- fi
-
- if test -n "$export_symbols" && test -n "$include_expsyms"; then
- $run eval '$echo "X$include_expsyms" | $SP2NL >> "$export_symbols"'
- fi
-
- if test -n "$convenience"; then
- if test -n "$whole_archive_flag_spec"; then
- eval libobjs=\"\$libobjs $whole_archive_flag_spec\"
- else
- gentop="$output_objdir/${outputname}x"
- $show "${rm}r $gentop"
- $run ${rm}r "$gentop"
- $show "mkdir $gentop"
- $run mkdir "$gentop"
- status=$?
- if test $status -ne 0 && test ! -d "$gentop"; then
- exit $status
- fi
- generated="$generated $gentop"
-
- for xlib in $convenience; do
- # Extract the objects.
- case "$xlib" in
- [\\/]* | [A-Za-z]:[\\/]*) xabs="$xlib" ;;
- *) xabs=`pwd`"/$xlib" ;;
- esac
- xlib=`$echo "X$xlib" | $Xsed -e 's%^.*/%%'`
- xdir="$gentop/$xlib"
-
- $show "${rm}r $xdir"
- $run ${rm}r "$xdir"
- $show "mkdir $xdir"
- $run mkdir "$xdir"
- status=$?
- if test $status -ne 0 && test ! -d "$xdir"; then
- exit $status
- fi
- $show "(cd $xdir && $AR x $xabs)"
- $run eval "(cd \$xdir && $AR x \$xabs)" || exit $?
-
- libobjs="$libobjs "`find $xdir -name \*.o -print -o -name \*.lo -print | $NL2SP`
- done
- fi
- fi
-
- if test "$thread_safe" = yes && test -n "$thread_safe_flag_spec"; then
- eval flag=\"$thread_safe_flag_spec\"
- linkopts="$linkopts $flag"
- fi
-
- # Do each of the archive commands.
- if test -n "$export_symbols" && test -n "$archive_expsym_cmds"; then
- eval cmds=\"$archive_expsym_cmds\"
- else
- eval cmds=\"$archive_cmds\"
- fi
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd" || exit $?
- done
- IFS="$save_ifs"
-
- # Create links to the real library.
- for linkname in $linknames; do
- if test "$realname" != "$linkname"; then
- $show "(cd $output_objdir && $rm $linkname && $LN_S $realname $linkname)"
- $run eval '(cd $output_objdir && $rm $linkname && $LN_S $realname $linkname)' || exit $?
- fi
- done
-
- # If -module or -export-dynamic was specified, set the dlname.
- if test "$module" = yes || test "$export_dynamic" = yes; then
- # On all known operating systems, these are identical.
- dlname="$soname"
- fi
- fi
- ;;
-
- *.lo | *.o | *.obj)
- if test -n "$link_against_libtool_libs"; then
- $echo "$modename: error: cannot link libtool libraries into objects" 1>&2
- exit 1
- fi
-
- if test -n "$deplibs"; then
- $echo "$modename: warning: \`-l' and \`-L' are ignored for objects" 1>&2
- fi
-
- if test -n "$dlfiles$dlprefiles" || test "$dlself" != no; then
- $echo "$modename: warning: \`-dlopen' is ignored for objects" 1>&2
- fi
-
- if test -n "$rpath"; then
- $echo "$modename: warning: \`-rpath' is ignored for objects" 1>&2
- fi
-
- if test -n "$xrpath"; then
- $echo "$modename: warning: \`-R' is ignored for objects" 1>&2
- fi
-
- if test -n "$vinfo"; then
- $echo "$modename: warning: \`-version-info' is ignored for objects" 1>&2
- fi
-
- if test -n "$release"; then
- $echo "$modename: warning: \`-release' is ignored for objects" 1>&2
- fi
-
- case "$output" in
- *.lo)
- if test -n "$objs"; then
- $echo "$modename: cannot build library object \`$output' from non-libtool objects" 1>&2
- exit 1
- fi
- libobj="$output"
- obj=`$echo "X$output" | $Xsed -e "$lo2o"`
- ;;
- *)
- libobj=
- obj="$output"
- ;;
- esac
-
- # Delete the old objects.
- $run $rm $obj $libobj
-
- # Objects from convenience libraries. This assumes
- # single-version convenience libraries. Whenever we create
- # different ones for PIC/non-PIC, this we'll have to duplicate
- # the extraction.
- reload_conv_objs=
- gentop=
- # reload_cmds runs $LD directly, so let us get rid of
- # -Wl from whole_archive_flag_spec
- wl=
-
- if test -n "$convenience"; then
- if test -n "$whole_archive_flag_spec"; then
- eval reload_conv_objs=\"\$reload_objs $whole_archive_flag_spec\"
- else
- gentop="$output_objdir/${obj}x"
- $show "${rm}r $gentop"
- $run ${rm}r "$gentop"
- $show "mkdir $gentop"
- $run mkdir "$gentop"
- status=$?
- if test $status -ne 0 && test ! -d "$gentop"; then
- exit $status
- fi
- generated="$generated $gentop"
-
- for xlib in $convenience; do
- # Extract the objects.
- case "$xlib" in
- [\\/]* | [A-Za-z]:[\\/]*) xabs="$xlib" ;;
- *) xabs=`pwd`"/$xlib" ;;
- esac
- xlib=`$echo "X$xlib" | $Xsed -e 's%^.*/%%'`
- xdir="$gentop/$xlib"
-
- $show "${rm}r $xdir"
- $run ${rm}r "$xdir"
- $show "mkdir $xdir"
- $run mkdir "$xdir"
- status=$?
- if test $status -ne 0 && test ! -d "$xdir"; then
- exit $status
- fi
- $show "(cd $xdir && $AR x $xabs)"
- $run eval "(cd \$xdir && $AR x \$xabs)" || exit $?
-
- reload_conv_objs="$reload_objs "`find $xdir -name \*.o -print -o -name \*.lo -print | $NL2SP`
- done
- fi
- fi
-
- # Create the old-style object.
- reload_objs="$objs "`$echo "X$libobjs" | $SP2NL | $Xsed -e '/\.'${libext}$'/d' -e '/\.lib$/d' -e "$lo2o" | $NL2SP`" $reload_conv_objs"
-
- output="$obj"
- eval cmds=\"$reload_cmds\"
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd" || exit $?
- done
- IFS="$save_ifs"
-
- # Exit if we aren't doing a library object file.
- if test -z "$libobj"; then
- if test -n "$gentop"; then
- $show "${rm}r $gentop"
- $run ${rm}r $gentop
- fi
-
- exit 0
- fi
-
- if test "$build_libtool_libs" != yes; then
- if test -n "$gentop"; then
- $show "${rm}r $gentop"
- $run ${rm}r $gentop
- fi
-
- # Create an invalid libtool object if no PIC, so that we don't
- # accidentally link it into a program.
- $show "echo timestamp > $libobj"
- $run eval "echo timestamp > $libobj" || exit $?
- exit 0
- fi
-
- if test -n "$pic_flag"; then
- # Only do commands if we really have different PIC objects.
- reload_objs="$libobjs $reload_conv_objs"
- output="$libobj"
- eval cmds=\"$reload_cmds\"
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd" || exit $?
- done
- IFS="$save_ifs"
- else
- # Just create a symlink.
- $show $rm $libobj
- $run $rm $libobj
- xdir=`$echo "X$libobj" | $Xsed -e 's%/[^/]*$%%'`
- if test "X$xdir" = "X$libobj"; then
- xdir="."
- else
- xdir="$xdir"
- fi
- baseobj=`$echo "X$libobj" | $Xsed -e 's%^.*/%%'`
- oldobj=`$echo "X$baseobj" | $Xsed -e "$lo2o"`
- $show "(cd $xdir && $LN_S $oldobj $baseobj)"
- $run eval '(cd $xdir && $LN_S $oldobj $baseobj)' || exit $?
- fi
-
- if test -n "$gentop"; then
- $show "${rm}r $gentop"
- $run ${rm}r $gentop
- fi
-
- exit 0
- ;;
-
- # Anything else should be a program.
- *)
- if test -n "$vinfo"; then
- $echo "$modename: warning: \`-version-info' is ignored for programs" 1>&2
- fi
-
- if test -n "$release"; then
- $echo "$modename: warning: \`-release' is ignored for programs" 1>&2
- fi
-
- if test "$preload" = yes; then
- if test "$dlopen" = unknown && test "$dlopen_self" = unknown &&
- test "$dlopen_self_static" = unknown; then
- $echo "$modename: warning: \`AC_LIBTOOL_DLOPEN' not used. Assuming no dlopen support."
- fi
- fi
-
- if test -n "$rpath$xrpath"; then
- # If the user specified any rpath flags, then add them.
- for libdir in $rpath $xrpath; do
- # This is the magic to use -rpath.
- case "$compile_rpath " in
- *" $libdir "*) ;;
- *) compile_rpath="$compile_rpath $libdir" ;;
- esac
- case "$finalize_rpath " in
- *" $libdir "*) ;;
- *) finalize_rpath="$finalize_rpath $libdir" ;;
- esac
- done
- fi
-
- # Now hardcode the library paths
- rpath=
- hardcode_libdirs=
- for libdir in $compile_rpath $finalize_rpath; do
- if test -n "$hardcode_libdir_flag_spec"; then
- if test -n "$hardcode_libdir_separator"; then
- if test -z "$hardcode_libdirs"; then
- hardcode_libdirs="$libdir"
- else
- # Just accumulate the unique libdirs.
- case "$hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator" in
- *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*)
- ;;
- *)
- hardcode_libdirs="$hardcode_libdirs$hardcode_libdir_separator$libdir"
- ;;
- esac
- fi
- else
- eval flag=\"$hardcode_libdir_flag_spec\"
- rpath="$rpath $flag"
- fi
- elif test -n "$runpath_var"; then
- case "$perm_rpath " in
- *" $libdir "*) ;;
- *) perm_rpath="$perm_rpath $libdir" ;;
- esac
- fi
- done
- # Substitute the hardcoded libdirs into the rpath.
- if test -n "$hardcode_libdir_separator" &&
- test -n "$hardcode_libdirs"; then
- libdir="$hardcode_libdirs"
- eval rpath=\" $hardcode_libdir_flag_spec\"
- fi
- compile_rpath="$rpath"
-
- rpath=
- hardcode_libdirs=
- for libdir in $finalize_rpath; do
- if test -n "$hardcode_libdir_flag_spec"; then
- if test -n "$hardcode_libdir_separator"; then
- if test -z "$hardcode_libdirs"; then
- hardcode_libdirs="$libdir"
- else
- # Just accumulate the unique libdirs.
- case "$hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator" in
- *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*)
- ;;
- *)
- hardcode_libdirs="$hardcode_libdirs$hardcode_libdir_separator$libdir"
- ;;
- esac
- fi
- else
- eval flag=\"$hardcode_libdir_flag_spec\"
- rpath="$rpath $flag"
- fi
- elif test -n "$runpath_var"; then
- case "$finalize_perm_rpath " in
- *" $libdir "*) ;;
- *) finalize_perm_rpath="$finalize_perm_rpath $libdir" ;;
- esac
- fi
- done
- # Substitute the hardcoded libdirs into the rpath.
- if test -n "$hardcode_libdir_separator" &&
- test -n "$hardcode_libdirs"; then
- libdir="$hardcode_libdirs"
- eval rpath=\" $hardcode_libdir_flag_spec\"
- fi
- finalize_rpath="$rpath"
-
- output_objdir=`$echo "X$output" | $Xsed -e 's%/[^/]*$%%'`
- if test "X$output_objdir" = "X$output"; then
- output_objdir="$objdir"
- else
- output_objdir="$output_objdir/$objdir"
- fi
-
- # Create the binary in the object directory, then wrap it.
- if test ! -d $output_objdir; then
- $show "$mkdir $output_objdir"
- $run $mkdir $output_objdir
- status=$?
- if test $status -ne 0 && test ! -d $output_objdir; then
- exit $status
- fi
- fi
-
- if test -n "$libobjs" && test "$build_old_libs" = yes; then
- # Transform all the library objects into standard objects.
- compile_command=`$echo "X$compile_command" | $SP2NL | $Xsed -e "$lo2o" | $NL2SP`
- finalize_command=`$echo "X$finalize_command" | $SP2NL | $Xsed -e "$lo2o" | $NL2SP`
- fi
-
- dlsyms=
- if test -n "$dlfiles$dlprefiles" || test "$dlself" != no; then
- if test -n "$NM" && test -n "$global_symbol_pipe"; then
- dlsyms="${outputname}S.c"
- else
- $echo "$modename: not configured to extract global symbols from dlpreopened files" 1>&2
- fi
- fi
-
- if test -n "$dlsyms"; then
- case "$dlsyms" in
- "") ;;
- *.c)
- # Discover the nlist of each of the dlfiles.
- nlist="$output_objdir/${outputname}.nm"
-
- $show "$rm $nlist ${nlist}S ${nlist}T"
- $run $rm "$nlist" "${nlist}S" "${nlist}T"
-
- # Parse the name list into a source file.
- $show "creating $output_objdir/$dlsyms"
-
- test -z "$run" && $echo > "$output_objdir/$dlsyms" "\
-/* $dlsyms - symbol resolution table for \`$outputname' dlsym emulation. */
-/* Generated by $PROGRAM - GNU $PACKAGE $VERSION$TIMESTAMP */
-
-#ifdef __cplusplus
-extern \"C\" {
-#endif
-
-/* Prevent the only kind of declaration conflicts we can make. */
-#define lt_preloaded_symbols some_other_symbol
-
-/* External symbol declarations for the compiler. */\
-"
-
- if test "$dlself" = yes; then
- $show "generating symbol list for \`$output'"
-
- test -z "$run" && $echo ': @PROGRAM@ ' > "$nlist"
-
- # Add our own program objects to the symbol list.
- progfiles=`$echo "X$objs" | $SP2NL | $Xsed -e "$lo2o" | $NL2SP`
- for arg in $progfiles; do
- $show "extracting global C symbols from \`$arg'"
- $run eval "$NM $arg | $global_symbol_pipe >> '$nlist'"
- done
-
- if test -n "$exclude_expsyms"; then
- $run eval 'egrep -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T'
- $run eval '$mv "$nlist"T "$nlist"'
- fi
-
- if test -n "$export_symbols_regex"; then
- $run eval 'egrep -e "$export_symbols_regex" "$nlist" > "$nlist"T'
- $run eval '$mv "$nlist"T "$nlist"'
- fi
-
- # Prepare the list of exported symbols
- if test -z "$export_symbols"; then
- export_symbols="$output_objdir/$output.exp"
- $run $rm $export_symbols
- $run eval "sed -n -e '/^: @PROGRAM@$/d' -e 's/^.* \(.*\)$/\1/p' "'< "$nlist" > "$export_symbols"'
- else
- $run eval "sed -e 's/\([][.*^$]\)/\\\1/g' -e 's/^/ /' -e 's/$/$/'"' < "$export_symbols" > "$output_objdir/$output.exp"'
- $run eval 'grep -f "$output_objdir/$output.exp" < "$nlist" > "$nlist"T'
- $run eval 'mv "$nlist"T "$nlist"'
- fi
- fi
-
- for arg in $dlprefiles; do
- $show "extracting global C symbols from \`$arg'"
- name=`echo "$arg" | sed -e 's%^.*/%%'`
- $run eval 'echo ": $name " >> "$nlist"'
- $run eval "$NM $arg | $global_symbol_pipe >> '$nlist'"
- done
-
- if test -z "$run"; then
- # Make sure we have at least an empty file.
- test -f "$nlist" || : > "$nlist"
-
- if test -n "$exclude_expsyms"; then
- egrep -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T
- $mv "$nlist"T "$nlist"
- fi
-
- # Try sorting and uniquifying the output.
- if grep -v "^: " < "$nlist" | sort +2 | uniq > "$nlist"S; then
- :
- else
- grep -v "^: " < "$nlist" > "$nlist"S
- fi
-
- if test -f "$nlist"S; then
- eval "$global_symbol_to_cdecl"' < "$nlist"S >> "$output_objdir/$dlsyms"'
- else
- echo '/* NONE */' >> "$output_objdir/$dlsyms"
- fi
-
- $echo >> "$output_objdir/$dlsyms" "\
-
-#undef lt_preloaded_symbols
-
-#if defined (__STDC__) && __STDC__
-# define lt_ptr_t void *
-#else
-# define lt_ptr_t char *
-# define const
-#endif
-
-/* The mapping between symbol names and symbols. */
-const struct {
- const char *name;
- lt_ptr_t address;
-}
-lt_preloaded_symbols[] =
-{\
-"
-
- sed -n -e 's/^: \([^ ]*\) $/ {\"\1\", (lt_ptr_t) 0},/p' \
- -e 's/^. \([^ ]*\) \([^ ]*\)$/ {"\2", (lt_ptr_t) \&\2},/p' \
- < "$nlist" >> "$output_objdir/$dlsyms"
-
- $echo >> "$output_objdir/$dlsyms" "\
- {0, (lt_ptr_t) 0}
-};
-
-/* This works around a problem in FreeBSD linker */
-#ifdef FREEBSD_WORKAROUND
-static const void *lt_preloaded_setup() {
- return lt_preloaded_symbols;
-}
-#endif
-
-#ifdef __cplusplus
-}
-#endif\
-"
- fi
-
- pic_flag_for_symtable=
- case "$host" in
- # compiling the symbol table file with pic_flag works around
- # a FreeBSD bug that causes programs to crash when -lm is
- # linked before any other PIC object. But we must not use
- # pic_flag when linking with -static. The problem exists in
- # FreeBSD 2.2.6 and is fixed in FreeBSD 3.1.
- *-*-freebsd2*|*-*-freebsd3.0*|*-*-freebsdelf3.0*)
- case "$compile_command " in
- *" -static "*) ;;
- *) pic_flag_for_symtable=" $pic_flag -DPIC -DFREEBSD_WORKAROUND";;
- esac;;
- *-*-hpux*)
- case "$compile_command " in
- *" -static "*) ;;
- *) pic_flag_for_symtable=" $pic_flag -DPIC";;
- esac
- esac
-
- # Now compile the dynamic symbol file.
- $show "(cd $output_objdir && $CC -c$no_builtin_flag$pic_flag_for_symtable \"$dlsyms\")"
- $run eval '(cd $output_objdir && $CC -c$no_builtin_flag$pic_flag_for_symtable "$dlsyms")' || exit $?
-
- # Clean up the generated files.
- $show "$rm $output_objdir/$dlsyms $nlist ${nlist}S ${nlist}T"
- $run $rm "$output_objdir/$dlsyms" "$nlist" "${nlist}S" "${nlist}T"
-
- # Transform the symbol file into the correct name.
- compile_command=`$echo "X$compile_command" | $Xsed -e "s%@SYMFILE@%$output_objdir/${outputname}S.${objext}%"`
- finalize_command=`$echo "X$finalize_command" | $Xsed -e "s%@SYMFILE@%$output_objdir/${outputname}S.${objext}%"`
- ;;
- *)
- $echo "$modename: unknown suffix for \`$dlsyms'" 1>&2
- exit 1
- ;;
- esac
- else
- # We keep going just in case the user didn't refer to
- # lt_preloaded_symbols. The linker will fail if global_symbol_pipe
- # really was required.
-
- # Nullify the symbol file.
- compile_command=`$echo "X$compile_command" | $Xsed -e "s% @SYMFILE@%%"`
- finalize_command=`$echo "X$finalize_command" | $Xsed -e "s% @SYMFILE@%%"`
- fi
-
- if test -z "$link_against_libtool_libs" || test "$build_libtool_libs" != yes; then
- # Replace the output file specification.
- compile_command=`$echo "X$compile_command" | $Xsed -e 's%@OUTPUT@%'"$output"'%g'`
- link_command="$compile_command$compile_rpath"
-
- # We have no uninstalled library dependencies, so finalize right now.
- $show "$link_command"
- $run eval "$link_command"
- status=$?
-
- # Delete the generated files.
- if test -n "$dlsyms"; then
- $show "$rm $output_objdir/${outputname}S.${objext}"
- $run $rm "$output_objdir/${outputname}S.${objext}"
- fi
-
- exit $status
- fi
-
- if test -n "$shlibpath_var"; then
- # We should set the shlibpath_var
- rpath=
- for dir in $temp_rpath; do
- case "$dir" in
- [\\/]* | [A-Za-z]:[\\/]*)
- # Absolute path.
- rpath="$rpath$dir:"
- ;;
- *)
- # Relative path: add a thisdir entry.
- rpath="$rpath\$thisdir/$dir:"
- ;;
- esac
- done
- temp_rpath="$rpath"
- fi
-
- if test -n "$compile_shlibpath$finalize_shlibpath"; then
- compile_command="$shlibpath_var=\"$compile_shlibpath$finalize_shlibpath\$$shlibpath_var\" $compile_command"
- fi
- if test -n "$finalize_shlibpath"; then
- finalize_command="$shlibpath_var=\"$finalize_shlibpath\$$shlibpath_var\" $finalize_command"
- fi
-
- compile_var=
- finalize_var=
- if test -n "$runpath_var"; then
- if test -n "$perm_rpath"; then
- # We should set the runpath_var.
- rpath=
- for dir in $perm_rpath; do
- rpath="$rpath$dir:"
- done
- compile_var="$runpath_var=\"$rpath\$$runpath_var\" "
- fi
- if test -n "$finalize_perm_rpath"; then
- # We should set the runpath_var.
- rpath=
- for dir in $finalize_perm_rpath; do
- rpath="$rpath$dir:"
- done
- finalize_var="$runpath_var=\"$rpath\$$runpath_var\" "
- fi
- fi
-
- if test "$hardcode_action" = relink; then
- # Fast installation is not supported
- link_command="$compile_var$compile_command$compile_rpath"
- relink_command="$finalize_var$finalize_command$finalize_rpath"
-
- $echo "$modename: warning: this platform does not like uninstalled shared libraries" 1>&2
- $echo "$modename: \`$output' will be relinked during installation" 1>&2
- else
- if test "$fast_install" != no; then
- link_command="$finalize_var$compile_command$finalize_rpath"
- if test "$fast_install" = yes; then
- relink_command=`$echo "X$compile_var$compile_command$compile_rpath" | $Xsed -e 's%@OUTPUT@%\$progdir/\$file%g'`
- else
- # fast_install is set to needless
- relink_command=
- fi
- else
- link_command="$compile_var$compile_command$compile_rpath"
- relink_command="$finalize_var$finalize_command$finalize_rpath"
- fi
- fi
-
- # Replace the output file specification.
- link_command=`$echo "X$link_command" | $Xsed -e 's%@OUTPUT@%'"$output_objdir/$outputname"'%g'`
-
- # Delete the old output files.
- $run $rm $output $output_objdir/$outputname $output_objdir/lt-$outputname
-
- $show "$link_command"
- $run eval "$link_command" || exit $?
-
- # Now create the wrapper script.
- $show "creating $output"
-
- # Quote the relink command for shipping.
- if test -n "$relink_command"; then
- relink_command=`$echo "X$relink_command" | $Xsed -e "$sed_quote_subst"`
- fi
-
- # Quote $echo for shipping.
- if test "X$echo" = "X$SHELL $0 --fallback-echo"; then
- case "$0" in
- [\\/]* | [A-Za-z]:[\\/]*) qecho="$SHELL $0 --fallback-echo";;
- *) qecho="$SHELL `pwd`/$0 --fallback-echo";;
- esac
- qecho=`$echo "X$qecho" | $Xsed -e "$sed_quote_subst"`
- else
- qecho=`$echo "X$echo" | $Xsed -e "$sed_quote_subst"`
- fi
-
- # Only actually do things if our run command is non-null.
- if test -z "$run"; then
- # win32 will think the script is a binary if it has
- # a .exe suffix, so we strip it off here.
- case $output in
- *.exe) output=`echo $output|sed 's,.exe$,,'` ;;
- esac
- $rm $output
- trap "$rm $output; exit 1" 1 2 15
-
- $echo > $output "\
-#! $SHELL
-
-# $output - temporary wrapper script for $objdir/$outputname
-# Generated by $PROGRAM - GNU $PACKAGE $VERSION$TIMESTAMP
-#
-# The $output program cannot be directly executed until all the libtool
-# libraries that it depends on are installed.
-#
-# This wrapper script should never be moved out of the build directory.
-# If it is, it will not operate correctly.
-
-# Sed substitution that helps us do robust quoting. It backslashifies
-# metacharacters that are still active within double-quoted strings.
-Xsed='sed -e 1s/^X//'
-sed_quote_subst='$sed_quote_subst'
-
-# The HP-UX ksh and POSIX shell print the target directory to stdout
-# if CDPATH is set.
-if test \"\${CDPATH+set}\" = set; then CDPATH=:; export CDPATH; fi
-
-relink_command=\"$relink_command\"
-
-# This environment variable determines our operation mode.
-if test \"\$libtool_install_magic\" = \"$magic\"; then
- # install mode needs the following variable:
- link_against_libtool_libs='$link_against_libtool_libs'
-else
- # When we are sourced in execute mode, \$file and \$echo are already set.
- if test \"\$libtool_execute_magic\" != \"$magic\"; then
- echo=\"$qecho\"
- file=\"\$0\"
- # Make sure echo works.
- if test \"X\$1\" = X--no-reexec; then
- # Discard the --no-reexec flag, and continue.
- shift
- elif test \"X\`(\$echo '\t') 2>/dev/null\`\" = 'X\t'; then
- # Yippee, \$echo works!
- :
- else
- # Restart under the correct shell, and then maybe \$echo will work.
- exec $SHELL \"\$0\" --no-reexec \${1+\"\$@\"}
- fi
- fi\
-"
- $echo >> $output "\
-
- # Find the directory that this script lives in.
- thisdir=\`\$echo \"X\$file\" | \$Xsed -e 's%/[^/]*$%%'\`
- test \"x\$thisdir\" = \"x\$file\" && thisdir=.
-
- # Follow symbolic links until we get to the real thisdir.
- file=\`ls -ld \"\$file\" | sed -n 's/.*-> //p'\`
- while test -n \"\$file\"; do
- destdir=\`\$echo \"X\$file\" | \$Xsed -e 's%/[^/]*\$%%'\`
-
- # If there was a directory component, then change thisdir.
- if test \"x\$destdir\" != \"x\$file\"; then
- case \"\$destdir\" in
- [\\/]* | [A-Za-z]:[\\/]*) thisdir=\"\$destdir\" ;;
- *) thisdir=\"\$thisdir/\$destdir\" ;;
- esac
- fi
-
- file=\`\$echo \"X\$file\" | \$Xsed -e 's%^.*/%%'\`
- file=\`ls -ld \"\$thisdir/\$file\" | sed -n 's/.*-> //p'\`
- done
-
- # Try to get the absolute directory name.
- absdir=\`cd \"\$thisdir\" && pwd\`
- test -n \"\$absdir\" && thisdir=\"\$absdir\"
-"
-
- if test "$fast_install" = yes; then
- echo >> $output "\
- program=lt-'$outputname'
- progdir=\"\$thisdir/$objdir\"
-
- if test ! -f \"\$progdir/\$program\" || \\
- { file=\`ls -1dt \"\$progdir/\$program\" \"\$progdir/../\$program\" 2>/dev/null | sed 1q\`; \\
- test \"X\$file\" != \"X\$progdir/\$program\"; }; then
-
- file=\"\$\$-\$program\"
-
- if test ! -d \"\$progdir\"; then
- $mkdir \"\$progdir\"
- else
- $rm \"\$progdir/\$file\"
- fi"
-
- echo >> $output "\
-
- # relink executable if necessary
- if test -n \"\$relink_command\"; then
- if (cd \"\$thisdir\" && eval \$relink_command); then :
- else
- $rm \"\$progdir/\$file\"
- exit 1
- fi
- fi
-
- $mv \"\$progdir/\$file\" \"\$progdir/\$program\" 2>/dev/null ||
- { $rm \"\$progdir/\$program\";
- $mv \"\$progdir/\$file\" \"\$progdir/\$program\"; }
- $rm \"\$progdir/\$file\"
- fi"
- else
- echo >> $output "\
- program='$outputname'
- progdir=\"\$thisdir/$objdir\"
-"
- fi
-
- echo >> $output "\
-
- if test -f \"\$progdir/\$program\"; then"
-
- # Export our shlibpath_var if we have one.
- if test "$shlibpath_overrides_runpath" = yes && test -n "$shlibpath_var" && test -n "$temp_rpath"; then
- $echo >> $output "\
- # Add our own library path to $shlibpath_var
- $shlibpath_var=\"$temp_rpath\$$shlibpath_var\"
-
- # Some systems cannot cope with colon-terminated $shlibpath_var
- # The second colon is a workaround for a bug in BeOS R4 sed
- $shlibpath_var=\`\$echo \"X\$$shlibpath_var\" | \$Xsed -e 's/::*\$//'\`
-
- export $shlibpath_var
-"
- fi
-
- # fixup the dll searchpath if we need to.
- if test -n "$dllsearchpath"; then
- $echo >> $output "\
- # Add the dll search path components to the executable PATH
- PATH=$dllsearchpath:\$PATH
-"
- fi
-
- $echo >> $output "\
- if test \"\$libtool_execute_magic\" != \"$magic\"; then
- # Run the actual program with our arguments.
-"
- case $host in
- *-*-cygwin* | *-*-mingw | *-*-os2*)
- # win32 systems need to use the prog path for dll
- # lookup to work
- $echo >> $output "\
- exec \$progdir\\\\\$program \${1+\"\$@\"}
-"
- ;;
- *)
- $echo >> $output "\
- # Export the path to the program.
- PATH=\"\$progdir:\$PATH\"
- export PATH
-
- exec \$program \${1+\"\$@\"}
-"
- ;;
- esac
- $echo >> $output "\
- \$echo \"\$0: cannot exec \$program \${1+\"\$@\"}\"
- exit 1
- fi
- else
- # The program doesn't exist.
- \$echo \"\$0: error: \$progdir/\$program does not exist\" 1>&2
- \$echo \"This script is just a wrapper for \$program.\" 1>&2
- echo \"See the $PACKAGE documentation for more information.\" 1>&2
- exit 1
- fi
-fi\
-"
- chmod +x $output
- fi
- exit 0
- ;;
- esac
-
- # See if we need to build an old-fashioned archive.
- for oldlib in $oldlibs; do
-
- if test "$build_libtool_libs" = convenience; then
- oldobjs="$libobjs_save"
- addlibs="$convenience"
- build_libtool_libs=no
- else
- if test "$build_libtool_libs" = module; then
- oldobjs="$libobjs_save"
- build_libtool_libs=no
- else
- oldobjs="$objs "`$echo "X$libobjs_save" | $SP2NL | $Xsed -e '/\.'${libext}'$/d' -e '/\.lib$/d' -e "$lo2o" | $NL2SP`
- fi
- addlibs="$old_convenience"
- fi
-
- if test -n "$addlibs"; then
- gentop="$output_objdir/${outputname}x"
- $show "${rm}r $gentop"
- $run ${rm}r "$gentop"
- $show "mkdir $gentop"
- $run mkdir "$gentop"
- status=$?
- if test $status -ne 0 && test ! -d "$gentop"; then
- exit $status
- fi
- generated="$generated $gentop"
-
- # Add in members from convenience archives.
- for xlib in $addlibs; do
- # Extract the objects.
- case "$xlib" in
- [\\/]* | [A-Za-z]:[\\/]*) xabs="$xlib" ;;
- *) xabs=`pwd`"/$xlib" ;;
- esac
- xlib=`$echo "X$xlib" | $Xsed -e 's%^.*/%%'`
- xdir="$gentop/$xlib"
-
- $show "${rm}r $xdir"
- $run ${rm}r "$xdir"
- $show "mkdir $xdir"
- $run mkdir "$xdir"
- status=$?
- if test $status -ne 0 && test ! -d "$xdir"; then
- exit $status
- fi
- $show "(cd $xdir && $AR x $xabs)"
- $run eval "(cd \$xdir && $AR x \$xabs)" || exit $?
-
- oldobjs="$oldobjs "`find $xdir -name \*.${objext} -print -o -name \*.lo -print | $NL2SP`
- done
- fi
-
- # Do each command in the archive commands.
- if test -n "$old_archive_from_new_cmds" && test "$build_libtool_libs" = yes; then
- eval cmds=\"$old_archive_from_new_cmds\"
- else
- # Ensure that we have .o objects in place in case we decided
- # not to build a shared library, and have fallen back to building
- # static libs even though --disable-static was passed!
- for oldobj in $oldobjs; do
- if test ! -f $oldobj; then
- xdir=`$echo "X$oldobj" | $Xsed -e 's%/[^/]*$%%'`
- if test "X$xdir" = "X$oldobj"; then
- xdir="."
- else
- xdir="$xdir"
- fi
- baseobj=`$echo "X$oldobj" | $Xsed -e 's%^.*/%%'`
- obj=`$echo "X$baseobj" | $Xsed -e "$o2lo"`
- $show "(cd $xdir && ${LN_S} $obj $baseobj)"
- $run eval '(cd $xdir && ${LN_S} $obj $baseobj)' || exit $?
- fi
- done
-
- eval cmds=\"$old_archive_cmds\"
- fi
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd" || exit $?
- done
- IFS="$save_ifs"
- done
-
- if test -n "$generated"; then
- $show "${rm}r$generated"
- $run ${rm}r$generated
- fi
-
- # Now create the libtool archive.
- case "$output" in
- *.la)
- old_library=
- test "$build_old_libs" = yes && old_library="$libname.$libext"
- $show "creating $output"
-
- if test -n "$xrpath"; then
- temp_xrpath=
- for libdir in $xrpath; do
- temp_xrpath="$temp_xrpath -R$libdir"
- done
- dependency_libs="$temp_xrpath $dependency_libs"
- fi
-
- # Only create the output if not a dry run.
- if test -z "$run"; then
- for installed in no yes; do
- if test "$installed" = yes; then
- if test -z "$install_libdir"; then
- break
- fi
- output="$output_objdir/$outputname"i
- fi
- $rm $output
- $echo > $output "\
-# $outputname - a libtool library file
-# Generated by $PROGRAM - GNU $PACKAGE $VERSION$TIMESTAMP
-#
-# Please DO NOT delete this file!
-# It is necessary for linking the library.
-
-# The name that we can dlopen(3).
-dlname='$dlname'
-
-# Names of this library.
-library_names='$library_names'
-
-# The name of the static archive.
-old_library='$old_library'
-
-# Libraries that this one depends upon.
-dependency_libs='$dependency_libs'
-
-# Version information for $libname.
-current=$current
-age=$age
-revision=$revision
-
-# Is this an already installed library?
-installed=$installed
-
-# Directory that this library needs to be installed in:
-libdir='$install_libdir'\
-"
- done
- fi
-
- # Do a symbolic link so that the libtool archive can be found in
- # LD_LIBRARY_PATH before the program is installed.
- $show "(cd $output_objdir && $rm $outputname && $LN_S ../$outputname $outputname)"
- $run eval "(cd $output_objdir && $rm $outputname && $LN_S ../$outputname $outputname)" || exit $?
- ;;
- esac
- exit 0
- ;;
-
- # libtool install mode
- install)
- modename="$modename: install"
-
- # There may be an optional sh(1) argument at the beginning of
- # install_prog (especially on Windows NT).
- if test "$nonopt" = "$SHELL" || test "$nonopt" = /bin/sh; then
- # Aesthetically quote it.
- arg=`$echo "X$nonopt" | $Xsed -e "$sed_quote_subst"`
- case "$arg" in
- *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*)
- arg="\"$arg\""
- ;;
- esac
- install_prog="$arg "
- arg="$1"
- shift
- else
- install_prog=
- arg="$nonopt"
- fi
-
- # The real first argument should be the name of the installation program.
- # Aesthetically quote it.
- arg=`$echo "X$arg" | $Xsed -e "$sed_quote_subst"`
- case "$arg" in
- *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*)
- arg="\"$arg\""
- ;;
- esac
- install_prog="$install_prog$arg"
-
- # We need to accept at least all the BSD install flags.
- dest=
- files=
- opts=
- prev=
- install_type=
- isdir=no
- stripme=
- for arg
- do
- if test -n "$dest"; then
- files="$files $dest"
- dest="$arg"
- continue
- fi
-
- case "$arg" in
- -d) isdir=yes ;;
- -f) prev="-f" ;;
- -g) prev="-g" ;;
- -m) prev="-m" ;;
- -o) prev="-o" ;;
- -s)
- stripme=" -s"
- continue
- ;;
- -*) ;;
-
- *)
- # If the previous option needed an argument, then skip it.
- if test -n "$prev"; then
- prev=
- else
- dest="$arg"
- continue
- fi
- ;;
- esac
-
- # Aesthetically quote the argument.
- arg=`$echo "X$arg" | $Xsed -e "$sed_quote_subst"`
- case "$arg" in
- *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*)
- arg="\"$arg\""
- ;;
- esac
- install_prog="$install_prog $arg"
- done
-
- if test -z "$install_prog"; then
- $echo "$modename: you must specify an install program" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- if test -n "$prev"; then
- $echo "$modename: the \`$prev' option requires an argument" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- if test -z "$files"; then
- if test -z "$dest"; then
- $echo "$modename: no file or destination specified" 1>&2
- else
- $echo "$modename: you must specify a destination" 1>&2
- fi
- $echo "$help" 1>&2
- exit 1
- fi
-
- # Strip any trailing slash from the destination.
- dest=`$echo "X$dest" | $Xsed -e 's%/$%%'`
-
- # Check to see that the destination is a directory.
- test -d "$dest" && isdir=yes
- if test "$isdir" = yes; then
- destdir="$dest"
- destname=
- else
- destdir=`$echo "X$dest" | $Xsed -e 's%/[^/]*$%%'`
- test "X$destdir" = "X$dest" && destdir=.
- destname=`$echo "X$dest" | $Xsed -e 's%^.*/%%'`
-
- # Not a directory, so check to see that there is only one file specified.
- set dummy $files
- if test $# -gt 2; then
- $echo "$modename: \`$dest' is not a directory" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
- fi
- case "$destdir" in
- [\\/]* | [A-Za-z]:[\\/]*) ;;
- *)
- for file in $files; do
- case "$file" in
- *.lo) ;;
- *)
- $echo "$modename: \`$destdir' must be an absolute directory name" 1>&2
- $echo "$help" 1>&2
- exit 1
- ;;
- esac
- done
- ;;
- esac
-
- # This variable tells wrapper scripts just to set variables rather
- # than running their programs.
- libtool_install_magic="$magic"
-
- staticlibs=
- future_libdirs=
- current_libdirs=
- for file in $files; do
-
- # Do each installation.
- case "$file" in
- *.a | *.lib)
- # Do the static libraries later.
- staticlibs="$staticlibs $file"
- ;;
-
- *.la)
- # Check to see that this really is a libtool archive.
- if (sed -e '2q' $file | egrep "^# Generated by .*$PACKAGE") >/dev/null 2>&1; then :
- else
- $echo "$modename: \`$file' is not a valid libtool archive" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- library_names=
- old_library=
- # If there is no directory component, then add one.
- case "$file" in
- */* | *\\*) . $file ;;
- *) . ./$file ;;
- esac
-
- # Add the libdir to current_libdirs if it is the destination.
- if test "X$destdir" = "X$libdir"; then
- case "$current_libdirs " in
- *" $libdir "*) ;;
- *) current_libdirs="$current_libdirs $libdir" ;;
- esac
- else
- # Note the libdir as a future libdir.
- case "$future_libdirs " in
- *" $libdir "*) ;;
- *) future_libdirs="$future_libdirs $libdir" ;;
- esac
- fi
-
- dir="`$echo "X$file" | $Xsed -e 's%/[^/]*$%%'`/"
- test "X$dir" = "X$file/" && dir=
- dir="$dir$objdir"
-
- # See the names of the shared library.
- set dummy $library_names
- if test -n "$2"; then
- realname="$2"
- shift
- shift
-
- # Install the shared library and build the symlinks.
- $show "$install_prog $dir/$realname $destdir/$realname"
- $run eval "$install_prog $dir/$realname $destdir/$realname" || exit $?
-
- if test $# -gt 0; then
- # Delete the old symlinks, and create new ones.
- for linkname
- do
- if test "$linkname" != "$realname"; then
- $show "(cd $destdir && $rm $linkname && $LN_S $realname $linkname)"
- $run eval "(cd $destdir && $rm $linkname && $LN_S $realname $linkname)"
- fi
- done
- fi
-
- # Do each command in the postinstall commands.
- lib="$destdir/$realname"
- eval cmds=\"$postinstall_cmds\"
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd" || exit $?
- done
- IFS="$save_ifs"
- fi
-
- # Install the pseudo-library for information purposes.
- name=`$echo "X$file" | $Xsed -e 's%^.*/%%'`
- instname="$dir/$name"i
- $show "$install_prog $instname $destdir/$name"
- $run eval "$install_prog $instname $destdir/$name" || exit $?
-
- # Maybe install the static library, too.
- test -n "$old_library" && staticlibs="$staticlibs $dir/$old_library"
- ;;
-
- *.lo)
- # Install (i.e. copy) a libtool object.
-
- # Figure out destination file name, if it wasn't already specified.
- if test -n "$destname"; then
- destfile="$destdir/$destname"
- else
- destfile=`$echo "X$file" | $Xsed -e 's%^.*/%%'`
- destfile="$destdir/$destfile"
- fi
-
- # Deduce the name of the destination old-style object file.
- case "$destfile" in
- *.lo)
- staticdest=`$echo "X$destfile" | $Xsed -e "$lo2o"`
- ;;
- *.o | *.obj)
- staticdest="$destfile"
- destfile=
- ;;
- *)
- $echo "$modename: cannot copy a libtool object to \`$destfile'" 1>&2
- $echo "$help" 1>&2
- exit 1
- ;;
- esac
-
- # Install the libtool object if requested.
- if test -n "$destfile"; then
- $show "$install_prog $file $destfile"
- $run eval "$install_prog $file $destfile" || exit $?
- fi
-
- # Install the old object if enabled.
- if test "$build_old_libs" = yes; then
- # Deduce the name of the old-style object file.
- staticobj=`$echo "X$file" | $Xsed -e "$lo2o"`
-
- $show "$install_prog $staticobj $staticdest"
- $run eval "$install_prog \$staticobj \$staticdest" || exit $?
- fi
- exit 0
- ;;
-
- *)
- # Figure out destination file name, if it wasn't already specified.
- if test -n "$destname"; then
- destfile="$destdir/$destname"
- else
- destfile=`$echo "X$file" | $Xsed -e 's%^.*/%%'`
- destfile="$destdir/$destfile"
- fi
-
- # Do a test to see if this is really a libtool program.
- if (sed -e '4q' $file | egrep "^# Generated by .*$PACKAGE") >/dev/null 2>&1; then
- link_against_libtool_libs=
- relink_command=
-
- # If there is no directory component, then add one.
- case "$file" in
- */* | *\\*) . $file ;;
- *) . ./$file ;;
- esac
-
- # Check the variables that should have been set.
- if test -z "$link_against_libtool_libs"; then
- $echo "$modename: invalid libtool wrapper script \`$file'" 1>&2
- exit 1
- fi
-
- finalize=yes
- for lib in $link_against_libtool_libs; do
- # Check to see that each library is installed.
- libdir=
- if test -f "$lib"; then
- # If there is no directory component, then add one.
- case "$lib" in
- */* | *\\*) . $lib ;;
- *) . ./$lib ;;
- esac
- fi
- libfile="$libdir/`$echo "X$lib" | $Xsed -e 's%^.*/%%g'`"
- if test -n "$libdir" && test ! -f "$libfile"; then
- $echo "$modename: warning: \`$lib' has not been installed in \`$libdir'" 1>&2
- finalize=no
- fi
- done
-
- outputname=
- if test "$fast_install" = no && test -n "$relink_command"; then
- if test "$finalize" = yes && test -z "$run"; then
- tmpdir="/tmp"
- test -n "$TMPDIR" && tmpdir="$TMPDIR"
- tmpdir="$tmpdir/libtool-$$"
- if $mkdir -p "$tmpdir" && chmod 700 "$tmpdir"; then :
- else
- $echo "$modename: error: cannot create temporary directory \`$tmpdir'" 1>&2
- continue
- fi
- outputname="$tmpdir/$file"
- # Replace the output file specification.
- relink_command=`$echo "X$relink_command" | $Xsed -e 's%@OUTPUT@%'"$outputname"'%g'`
-
- $show "$relink_command"
- if $run eval "$relink_command"; then :
- else
- $echo "$modename: error: relink \`$file' with the above command before installing it" 1>&2
- ${rm}r "$tmpdir"
- continue
- fi
- file="$outputname"
- else
- $echo "$modename: warning: cannot relink \`$file'" 1>&2
- fi
- else
- # Install the binary that we compiled earlier.
- file=`$echo "X$file" | $Xsed -e "s%\([^/]*\)$%$objdir/\1%"`
- fi
- fi
-
- $show "$install_prog$stripme $file $destfile"
- $run eval "$install_prog\$stripme \$file \$destfile" || exit $?
- test -n "$outputname" && ${rm}r "$tmpdir"
- ;;
- esac
- done
-
- for file in $staticlibs; do
- name=`$echo "X$file" | $Xsed -e 's%^.*/%%'`
-
- # Set up the ranlib parameters.
- oldlib="$destdir/$name"
-
- $show "$install_prog $file $oldlib"
- $run eval "$install_prog \$file \$oldlib" || exit $?
-
- # Do each command in the postinstall commands.
- eval cmds=\"$old_postinstall_cmds\"
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd" || exit $?
- done
- IFS="$save_ifs"
- done
-
- if test -n "$future_libdirs"; then
- $echo "$modename: warning: remember to run \`$progname --finish$future_libdirs'" 1>&2
- fi
-
- if test -n "$current_libdirs"; then
- # Maybe just do a dry run.
- test -n "$run" && current_libdirs=" -n$current_libdirs"
- exec $SHELL $0 --finish$current_libdirs
- exit 1
- fi
-
- exit 0
- ;;
-
- # libtool finish mode
- finish)
- modename="$modename: finish"
- libdirs="$nonopt"
- admincmds=
-
- if test -n "$finish_cmds$finish_eval" && test -n "$libdirs"; then
- for dir
- do
- libdirs="$libdirs $dir"
- done
-
- for libdir in $libdirs; do
- if test -n "$finish_cmds"; then
- # Do each command in the finish commands.
- eval cmds=\"$finish_cmds\"
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd" || admincmds="$admincmds
- $cmd"
- done
- IFS="$save_ifs"
- fi
- if test -n "$finish_eval"; then
- # Do the single finish_eval.
- eval cmds=\"$finish_eval\"
- $run eval "$cmds" || admincmds="$admincmds
- $cmds"
- fi
- done
- fi
-
- # Exit here if they wanted silent mode.
- test "$show" = : && exit 0
-
- echo "----------------------------------------------------------------------"
- echo "Libraries have been installed in:"
- for libdir in $libdirs; do
- echo " $libdir"
- done
- echo
- echo "If you ever happen to want to link against installed libraries"
- echo "in a given directory, LIBDIR, you must either use libtool, and"
- echo "specify the full pathname of the library, or use \`-LLIBDIR'"
- echo "flag during linking and do at least one of the following:"
- if test -n "$shlibpath_var"; then
- echo " - add LIBDIR to the \`$shlibpath_var' environment variable"
- echo " during execution"
- fi
- if test -n "$runpath_var"; then
- echo " - add LIBDIR to the \`$runpath_var' environment variable"
- echo " during linking"
- fi
- if test -n "$hardcode_libdir_flag_spec"; then
- libdir=LIBDIR
- eval flag=\"$hardcode_libdir_flag_spec\"
-
- echo " - use the \`$flag' linker flag"
- fi
- if test -n "$admincmds"; then
- echo " - have your system administrator run these commands:$admincmds"
- fi
- if test -f /etc/ld.so.conf; then
- echo " - have your system administrator add LIBDIR to \`/etc/ld.so.conf'"
- fi
- echo
- echo "See any operating system documentation about shared libraries for"
- echo "more information, such as the ld(1) and ld.so(8) manual pages."
- echo "----------------------------------------------------------------------"
- exit 0
- ;;
-
- # libtool execute mode
- execute)
- modename="$modename: execute"
-
- # The first argument is the command name.
- cmd="$nonopt"
- if test -z "$cmd"; then
- $echo "$modename: you must specify a COMMAND" 1>&2
- $echo "$help"
- exit 1
- fi
-
- # Handle -dlopen flags immediately.
- for file in $execute_dlfiles; do
- if test ! -f "$file"; then
- $echo "$modename: \`$file' is not a file" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- dir=
- case "$file" in
- *.la)
- # Check to see that this really is a libtool archive.
- if (sed -e '2q' $file | egrep "^# Generated by .*$PACKAGE") >/dev/null 2>&1; then :
- else
- $echo "$modename: \`$lib' is not a valid libtool archive" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- # Read the libtool library.
- dlname=
- library_names=
-
- # If there is no directory component, then add one.
- case "$file" in
- */* | *\\*) . $file ;;
- *) . ./$file ;;
- esac
-
- # Skip this library if it cannot be dlopened.
- if test -z "$dlname"; then
- # Warn if it was a shared library.
- test -n "$library_names" && $echo "$modename: warning: \`$file' was not linked with \`-export-dynamic'"
- continue
- fi
-
- dir=`$echo "X$file" | $Xsed -e 's%/[^/]*$%%'`
- test "X$dir" = "X$file" && dir=.
-
- if test -f "$dir/$objdir/$dlname"; then
- dir="$dir/$objdir"
- else
- $echo "$modename: cannot find \`$dlname' in \`$dir' or \`$dir/$objdir'" 1>&2
- exit 1
- fi
- ;;
-
- *.lo)
- # Just add the directory containing the .lo file.
- dir=`$echo "X$file" | $Xsed -e 's%/[^/]*$%%'`
- test "X$dir" = "X$file" && dir=.
- ;;
-
- *)
- $echo "$modename: warning \`-dlopen' is ignored for non-libtool libraries and objects" 1>&2
- continue
- ;;
- esac
-
- # Get the absolute pathname.
- absdir=`cd "$dir" && pwd`
- test -n "$absdir" && dir="$absdir"
-
- # Now add the directory to shlibpath_var.
- if eval "test -z \"\$$shlibpath_var\""; then
- eval "$shlibpath_var=\"\$dir\""
- else
- eval "$shlibpath_var=\"\$dir:\$$shlibpath_var\""
- fi
- done
-
- # This variable tells wrapper scripts just to set shlibpath_var
- # rather than running their programs.
- libtool_execute_magic="$magic"
-
- # Check if any of the arguments is a wrapper script.
- args=
- for file
- do
- case "$file" in
- -*) ;;
- *)
- # Do a test to see if this is really a libtool program.
- if (sed -e '4q' $file | egrep "^# Generated by .*$PACKAGE") >/dev/null 2>&1; then
- # If there is no directory component, then add one.
- case "$file" in
- */* | *\\*) . $file ;;
- *) . ./$file ;;
- esac
-
- # Transform arg to wrapped name.
- file="$progdir/$program"
- fi
- ;;
- esac
- # Quote arguments (to preserve shell metacharacters).
- file=`$echo "X$file" | $Xsed -e "$sed_quote_subst"`
- args="$args \"$file\""
- done
-
- if test -z "$run"; then
- if test -n "$shlibpath_var"; then
- # Export the shlibpath_var.
- eval "export $shlibpath_var"
- fi
-
- # Restore saved enviroment variables
- if test "${save_LC_ALL+set}" = set; then
- LC_ALL="$save_LC_ALL"; export LC_ALL
- fi
- if test "${save_LANG+set}" = set; then
- LANG="$save_LANG"; export LANG
- fi
-
- # Now actually exec the command.
- eval "exec \$cmd$args"
-
- $echo "$modename: cannot exec \$cmd$args"
- exit 1
- else
- # Display what would be done.
- if test -n "$shlibpath_var"; then
- eval "\$echo \"\$shlibpath_var=\$$shlibpath_var\""
- $echo "export $shlibpath_var"
- fi
- $echo "$cmd$args"
- exit 0
- fi
- ;;
-
- # libtool uninstall mode
- uninstall)
- modename="$modename: uninstall"
- rm="$nonopt"
- files=
-
- for arg
- do
- case "$arg" in
- -*) rm="$rm $arg" ;;
- *) files="$files $arg" ;;
- esac
- done
-
- if test -z "$rm"; then
- $echo "$modename: you must specify an RM program" 1>&2
- $echo "$help" 1>&2
- exit 1
- fi
-
- for file in $files; do
- dir=`$echo "X$file" | $Xsed -e 's%/[^/]*$%%'`
- test "X$dir" = "X$file" && dir=.
- name=`$echo "X$file" | $Xsed -e 's%^.*/%%'`
-
- rmfiles="$file"
-
- case "$name" in
- *.la)
- # Possibly a libtool archive, so verify it.
- if (sed -e '2q' $file | egrep "^# Generated by .*$PACKAGE") >/dev/null 2>&1; then
- . $dir/$name
-
- # Delete the libtool libraries and symlinks.
- for n in $library_names; do
- rmfiles="$rmfiles $dir/$n"
- done
- test -n "$old_library" && rmfiles="$rmfiles $dir/$old_library"
-
- $show "$rm $rmfiles"
- $run $rm $rmfiles
-
- if test -n "$library_names"; then
- # Do each command in the postuninstall commands.
- eval cmds=\"$postuninstall_cmds\"
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd"
- done
- IFS="$save_ifs"
- fi
-
- if test -n "$old_library"; then
- # Do each command in the old_postuninstall commands.
- eval cmds=\"$old_postuninstall_cmds\"
- IFS="${IFS= }"; save_ifs="$IFS"; IFS='~'
- for cmd in $cmds; do
- IFS="$save_ifs"
- $show "$cmd"
- $run eval "$cmd"
- done
- IFS="$save_ifs"
- fi
-
- # FIXME: should reinstall the best remaining shared library.
- fi
- ;;
-
- *.lo)
- if test "$build_old_libs" = yes; then
- oldobj=`$echo "X$name" | $Xsed -e "$lo2o"`
- rmfiles="$rmfiles $dir/$oldobj"
- fi
- $show "$rm $rmfiles"
- $run $rm $rmfiles
- ;;
-
- *)
- $show "$rm $rmfiles"
- $run $rm $rmfiles
- ;;
- esac
- done
- exit 0
- ;;
-
- "")
- $echo "$modename: you must specify a MODE" 1>&2
- $echo "$generic_help" 1>&2
- exit 1
- ;;
- esac
-
- $echo "$modename: invalid operation mode \`$mode'" 1>&2
- $echo "$generic_help" 1>&2
- exit 1
-fi # test -z "$show_help"
-
-# We need to display help for each of the modes.
-case "$mode" in
-"") $echo \
-"Usage: $modename [OPTION]... [MODE-ARG]...
-
-Provide generalized library-building support services.
-
- --config show all configuration variables
- --debug enable verbose shell tracing
--n, --dry-run display commands without modifying any files
- --features display basic configuration information and exit
- --finish same as \`--mode=finish'
- --help display this help message and exit
- --mode=MODE use operation mode MODE [default=inferred from MODE-ARGS]
- --quiet same as \`--silent'
- --silent don't print informational messages
- --version print version information
-
-MODE must be one of the following:
-
- compile compile a source file into a libtool object
- execute automatically set library path, then run a program
- finish complete the installation of libtool libraries
- install install libraries or executables
- link create a library or an executable
- uninstall remove libraries from an installed directory
-
-MODE-ARGS vary depending on the MODE. Try \`$modename --help --mode=MODE' for
-a more detailed description of MODE."
- exit 0
- ;;
-
-compile)
- $echo \
-"Usage: $modename [OPTION]... --mode=compile COMPILE-COMMAND... SOURCEFILE
-
-Compile a source file into a libtool library object.
-
-This mode accepts the following additional options:
-
- -o OUTPUT-FILE set the output file name to OUTPUT-FILE
- -static always build a \`.o' file suitable for static linking
-
-COMPILE-COMMAND is a command to be used in creating a \`standard' object file
-from the given SOURCEFILE.
-
-The output file name is determined by removing the directory component from
-SOURCEFILE, then substituting the C source code suffix \`.c' with the
-library object suffix, \`.lo'."
- ;;
-
-execute)
- $echo \
-"Usage: $modename [OPTION]... --mode=execute COMMAND [ARGS]...
-
-Automatically set library path, then run a program.
-
-This mode accepts the following additional options:
-
- -dlopen FILE add the directory containing FILE to the library path
-
-This mode sets the library path environment variable according to \`-dlopen'
-flags.
-
-If any of the ARGS are libtool executable wrappers, then they are translated
-into their corresponding uninstalled binary, and any of their required library
-directories are added to the library path.
-
-Then, COMMAND is executed, with ARGS as arguments."
- ;;
-
-finish)
- $echo \
-"Usage: $modename [OPTION]... --mode=finish [LIBDIR]...
-
-Complete the installation of libtool libraries.
-
-Each LIBDIR is a directory that contains libtool libraries.
-
-The commands that this mode executes may require superuser privileges. Use
-the \`--dry-run' option if you just want to see what would be executed."
- ;;
-
-install)
- $echo \
-"Usage: $modename [OPTION]... --mode=install INSTALL-COMMAND...
-
-Install executables or libraries.
-
-INSTALL-COMMAND is the installation command. The first component should be
-either the \`install' or \`cp' program.
-
-The rest of the components are interpreted as arguments to that command (only
-BSD-compatible install options are recognized)."
- ;;
-
-link)
- $echo \
-"Usage: $modename [OPTION]... --mode=link LINK-COMMAND...
-
-Link object files or libraries together to form another library, or to
-create an executable program.
-
-LINK-COMMAND is a command using the C compiler that you would use to create
-a program from several object files.
-
-The following components of LINK-COMMAND are treated specially:
-
- -all-static do not do any dynamic linking at all
- -avoid-version do not add a version suffix if possible
- -dlopen FILE \`-dlpreopen' FILE if it cannot be dlopened at runtime
- -dlpreopen FILE link in FILE and add its symbols to lt_preloaded_symbols
- -export-dynamic allow symbols from OUTPUT-FILE to be resolved with dlsym(3)
- -export-symbols SYMFILE
- try to export only the symbols listed in SYMFILE
- -export-symbols-regex REGEX
- try to export only the symbols matching REGEX
- -LLIBDIR search LIBDIR for required installed libraries
- -lNAME OUTPUT-FILE requires the installed library libNAME
- -module build a library that can dlopened
- -no-undefined declare that a library does not refer to external symbols
- -o OUTPUT-FILE create OUTPUT-FILE from the specified objects
- -release RELEASE specify package release information
- -rpath LIBDIR the created library will eventually be installed in LIBDIR
- -R[ ]LIBDIR add LIBDIR to the runtime path of programs and libraries
- -static do not do any dynamic linking of libtool libraries
- -version-info CURRENT[:REVISION[:AGE]]
- specify library version info [each variable defaults to 0]
-
-All other options (arguments beginning with \`-') are ignored.
-
-Every other argument is treated as a filename. Files ending in \`.la' are
-treated as uninstalled libtool libraries, other files are standard or library
-object files.
-
-If the OUTPUT-FILE ends in \`.la', then a libtool library is created,
-only library objects (\`.lo' files) may be specified, and \`-rpath' is
-required, except when creating a convenience library.
-
-If OUTPUT-FILE ends in \`.a' or \`.lib', then a standard library is created
-using \`ar' and \`ranlib', or on Windows using \`lib'.
-
-If OUTPUT-FILE ends in \`.lo' or \`.${objext}', then a reloadable object file
-is created, otherwise an executable program is created."
- ;;
-
-uninstall)
- $echo \
-"Usage: $modename [OPTION]... --mode=uninstall RM [RM-OPTION]... FILE...
-
-Remove libraries from an installation directory.
-
-RM is the name of the program to use to delete files associated with each FILE
-(typically \`/bin/rm'). RM-OPTIONS are options (such as \`-f') to be passed
-to RM.
-
-If FILE is a libtool library, all the files associated with it are deleted.
-Otherwise, only FILE itself is deleted using RM."
- ;;
-
-*)
- $echo "$modename: invalid operation mode \`$mode'" 1>&2
- $echo "$help" 1>&2
- exit 1
- ;;
-esac
-
-echo
-$echo "Try \`$modename --help' for more information about other modes."
-
-exit 0
-
-# Local Variables:
-# mode:shell-script
-# sh-indentation:2
-# End:
diff --git a/pcre/maketables.c b/pcre/maketables.c
deleted file mode 100644
index c0f06c03..00000000
--- a/pcre/maketables.c
+++ /dev/null
@@ -1,132 +0,0 @@
-/*************************************************
-* Perl-Compatible Regular Expressions *
-*************************************************/
-
-/*
-PCRE is a library of functions to support regular expressions whose syntax
-and semantics are as close as possible to those of the Perl 5 language.
-
-Written by: Philip Hazel
-
- Copyright (c) 1997-2000 University of Cambridge
-
------------------------------------------------------------------------------
-Permission is granted to anyone to use this software for any purpose on any
-computer system, and to redistribute it freely, subject to the following
-restrictions:
-
-1. This software is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-
-2. The origin of this software must not be misrepresented, either by
- explicit claim or by omission.
-
-3. Altered versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
-
-4. If PCRE is embedded in any software that is released under the GNU
- General Purpose Licence (GPL), then the terms of that licence shall
- supersede any condition above with which it is incompatible.
------------------------------------------------------------------------------
-
-See the file Tech.Notes for some information on the internals.
-*/
-
-
-/* This file is compiled on its own as part of the PCRE library. However,
-it is also included in the compilation of dftables.c, in which case the macro
-DFTABLES is defined. */
-
-#ifndef DFTABLES
-#include "internal.h"
-#endif
-
-
-
-/*************************************************
-* Create PCRE character tables *
-*************************************************/
-
-/* This function builds a set of character tables for use by PCRE and returns
-a pointer to them. They are build using the ctype functions, and consequently
-their contents will depend upon the current locale setting. When compiled as
-part of the library, the store is obtained via pcre_malloc(), but when compiled
-inside dftables, use malloc().
-
-Arguments: none
-Returns: pointer to the contiguous block of data
-*/
-
-unsigned const char *
-pcre_maketables(void)
-{
-unsigned char *yield, *p;
-int i;
-
-#ifndef DFTABLES
-yield = (unsigned char*)(pcre_malloc)(tables_length);
-#else
-yield = (unsigned char*)malloc(tables_length);
-#endif
-
-if (yield == NULL) return NULL;
-p = yield;
-
-/* First comes the lower casing table */
-
-for (i = 0; i < 256; i++) *p++ = tolower(i);
-
-/* Next the case-flipping table */
-
-for (i = 0; i < 256; i++) *p++ = islower(i)? toupper(i) : tolower(i);
-
-/* Then the character class tables. Don't try to be clever and save effort
-on exclusive ones - in some locales things may be different. */
-
-memset(p, 0, cbit_length);
-for (i = 0; i < 256; i++)
- {
- if (isdigit(i))
- {
- p[cbit_digit + i/8] |= 1 << (i&7);
- p[cbit_word + i/8] |= 1 << (i&7);
- }
- if (isupper(i))
- {
- p[cbit_upper + i/8] |= 1 << (i&7);
- p[cbit_word + i/8] |= 1 << (i&7);
- }
- if (islower(i))
- {
- p[cbit_lower + i/8] |= 1 << (i&7);
- p[cbit_word + i/8] |= 1 << (i&7);
- }
- if (i == '_') p[cbit_word + i/8] |= 1 << (i&7);
- if (isspace(i)) p[cbit_space + i/8] |= 1 << (i&7);
- if (isxdigit(i))p[cbit_xdigit + i/8] |= 1 << (i&7);
- if (isgraph(i)) p[cbit_graph + i/8] |= 1 << (i&7);
- if (isprint(i)) p[cbit_print + i/8] |= 1 << (i&7);
- if (ispunct(i)) p[cbit_punct + i/8] |= 1 << (i&7);
- if (iscntrl(i)) p[cbit_cntrl + i/8] |= 1 << (i&7);
- }
-p += cbit_length;
-
-/* Finally, the character type table */
-
-for (i = 0; i < 256; i++)
- {
- int x = 0;
- if (isspace(i)) x += ctype_space;
- if (isalpha(i)) x += ctype_letter;
- if (isdigit(i)) x += ctype_digit;
- if (isxdigit(i)) x += ctype_xdigit;
- if (isalnum(i) || i == '_') x += ctype_word;
- if (strchr("*+?{^.$|()[", i) != 0) x += ctype_meta;
- *p++ = x;
- }
-
-return yield;
-}
-
-/* End of maketables.c */
diff --git a/pcre/pcre-config b/pcre/pcre-config
deleted file mode 100644
index ac9ccfe9..00000000
--- a/pcre/pcre-config
+++ /dev/null
@@ -1,59 +0,0 @@
-#!/bin/sh
-
-prefix=/usr/local
-exec_prefix=${prefix}
-exec_prefix_set=no
-
-usage="\
-Usage: pcre-config [--prefix] [--exec-prefix] [--version] [--libs] [--libs-posix] [--cflags] [--cflags-posix]"
-
-if test $# -eq 0; then
- echo "${usage}" 1>&2
- exit 1
-fi
-
-while test $# -gt 0; do
- case "$1" in
- -*=*) optarg=`echo "$1" | sed 's/[-_a-zA-Z0-9]*=//'` ;;
- *) optarg= ;;
- esac
-
- case $1 in
- --prefix=*)
- prefix=$optarg
- if test $exec_prefix_set = no ; then
- exec_prefix=$optarg
- fi
- ;;
- --prefix)
- echo $prefix
- ;;
- --exec-prefix=*)
- exec_prefix=$optarg
- exec_prefix_set=yes
- ;;
- --exec-prefix)
- echo $exec_prefix
- ;;
- --version)
- echo 3.4
- ;;
- --cflags | --cflags-posix)
- if test ${prefix}/include != /usr/include ; then
- includes=-I${prefix}/include
- fi
- echo $includes
- ;;
- --libs-posix)
- echo -L${exec_prefix}/lib -lpcreposix -lpcre
- ;;
- --libs)
- echo -L${exec_prefix}/lib -lpcre
- ;;
- *)
- echo "${usage}" 1>&2
- exit 1
- ;;
- esac
- shift
-done
diff --git a/pcre/pcre-config.in b/pcre/pcre-config.in
deleted file mode 100644
index 8daded9f..00000000
--- a/pcre/pcre-config.in
+++ /dev/null
@@ -1,59 +0,0 @@
-#!/bin/sh
-
-prefix=@prefix@
-exec_prefix=@exec_prefix@
-exec_prefix_set=no
-
-usage="\
-Usage: pcre-config [--prefix] [--exec-prefix] [--version] [--libs] [--libs-posix] [--cflags] [--cflags-posix]"
-
-if test $# -eq 0; then
- echo "${usage}" 1>&2
- exit 1
-fi
-
-while test $# -gt 0; do
- case "$1" in
- -*=*) optarg=`echo "$1" | sed 's/[-_a-zA-Z0-9]*=//'` ;;
- *) optarg= ;;
- esac
-
- case $1 in
- --prefix=*)
- prefix=$optarg
- if test $exec_prefix_set = no ; then
- exec_prefix=$optarg
- fi
- ;;
- --prefix)
- echo $prefix
- ;;
- --exec-prefix=*)
- exec_prefix=$optarg
- exec_prefix_set=yes
- ;;
- --exec-prefix)
- echo $exec_prefix
- ;;
- --version)
- echo @PCRE_VERSION@
- ;;
- --cflags | --cflags-posix)
- if test @includedir@ != /usr/include ; then
- includes=-I@includedir@
- fi
- echo $includes
- ;;
- --libs-posix)
- echo -L@libdir@ -lpcreposix -lpcre
- ;;
- --libs)
- echo -L@libdir@ -lpcre
- ;;
- *)
- echo "${usage}" 1>&2
- exit 1
- ;;
- esac
- shift
-done
diff --git a/pcre/pcre.c b/pcre/pcre.c
deleted file mode 100644
index 9cd178e7..00000000
--- a/pcre/pcre.c
+++ /dev/null
@@ -1,5163 +0,0 @@
-/*************************************************
-* Perl-Compatible Regular Expressions *
-*************************************************/
-
-/*
-This is a library of functions to support regular expressions whose syntax
-and semantics are as close as possible to those of the Perl 5 language. See
-the file Tech.Notes for some information on the internals.
-
-Written by: Philip Hazel
-
- Copyright (c) 1997-2000 University of Cambridge
-
------------------------------------------------------------------------------
-Permission is granted to anyone to use this software for any purpose on any
-computer system, and to redistribute it freely, subject to the following
-restrictions:
-
-1. This software is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-
-2. The origin of this software must not be misrepresented, either by
- explicit claim or by omission.
-
-3. Altered versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
-
-4. If PCRE is embedded in any software that is released under the GNU
- General Purpose Licence (GPL), then the terms of that licence shall
- supersede any condition above with which it is incompatible.
------------------------------------------------------------------------------
-*/
-
-
-/* Define DEBUG to get debugging output on stdout. */
-
-/* #define DEBUG */
-
-/* Use a macro for debugging printing, 'cause that eliminates the use of #ifdef
-inline, and there are *still* stupid compilers about that don't like indented
-pre-processor statements. I suppose it's only been 10 years... */
-
-#ifdef DEBUG
-#define DPRINTF(p) printf p
-#else
-#define DPRINTF(p) /*nothing*/
-#endif
-
-/* Include the internals header, which itself includes Standard C headers plus
-the external pcre header. */
-
-#include "internal.h"
-
-
-/* Allow compilation as C++ source code, should anybody want to do that. */
-
-#ifdef __cplusplus
-#define class pcre_class
-#endif
-
-
-/* Number of items on the nested bracket stacks at compile time. This should
-not be set greater than 200. */
-
-#define BRASTACK_SIZE 200
-
-
-/* The number of bytes in a literal character string above which we can't add
-any more is different when UTF-8 characters may be encountered. */
-
-#ifdef SUPPORT_UTF8
-#define MAXLIT 250
-#else
-#define MAXLIT 255
-#endif
-
-
-/* Min and max values for the common repeats; for the maxima, 0 => infinity */
-
-static const char rep_min[] = { 0, 0, 1, 1, 0, 0 };
-static const char rep_max[] = { 0, 0, 0, 0, 1, 1 };
-
-/* Text forms of OP_ values and things, for debugging (not all used) */
-
-#ifdef DEBUG
-static const char *OP_names[] = {
- "End", "\\A", "\\B", "\\b", "\\D", "\\d",
- "\\S", "\\s", "\\W", "\\w", "\\Z", "\\z",
- "Opt", "^", "$", "Any", "chars", "not",
- "*", "*?", "+", "+?", "?", "??", "{", "{", "{",
- "*", "*?", "+", "+?", "?", "??", "{", "{", "{",
- "*", "*?", "+", "+?", "?", "??", "{", "{", "{",
- "*", "*?", "+", "+?", "?", "??", "{", "{",
- "class", "Ref", "Recurse",
- "Alt", "Ket", "KetRmax", "KetRmin", "Assert", "Assert not",
- "AssertB", "AssertB not", "Reverse", "Once", "Cond", "Cref",
- "Brazero", "Braminzero", "Bra"
-};
-#endif
-
-/* Table for handling escaped characters in the range '0'-'z'. Positive returns
-are simple data values; negative values are for special things like \d and so
-on. Zero means further processing is needed (for things like \x), or the escape
-is invalid. */
-
-static const short int escapes[] = {
- 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */
- 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */
- '@', -ESC_A, -ESC_B, 0, -ESC_D, 0, 0, 0, /* @ - G */
- 0, 0, 0, 0, 0, 0, 0, 0, /* H - O */
- 0, 0, 0, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */
- 0, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */
- '`', 7, -ESC_b, 0, -ESC_d, 27, '\f', 0, /* ` - g */
- 0, 0, 0, 0, 0, 0, '\n', 0, /* h - o */
- 0, 0, '\r', -ESC_s, '\t', 0, 0, -ESC_w, /* p - w */
- 0, 0, -ESC_z /* x - z */
-};
-
-/* Tables of names of POSIX character classes and their lengths. The list is
-terminated by a zero length entry. The first three must be alpha, upper, lower,
-as this is assumed for handling case independence. */
-
-static const char *posix_names[] = {
- "alpha", "lower", "upper",
- "alnum", "ascii", "cntrl", "digit", "graph",
- "print", "punct", "space", "word", "xdigit" };
-
-static const uschar posix_name_lengths[] = {
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
-
-/* Table of class bit maps for each POSIX class; up to three may be combined
-to form the class. */
-
-static const int posix_class_maps[] = {
- cbit_lower, cbit_upper, -1, /* alpha */
- cbit_lower, -1, -1, /* lower */
- cbit_upper, -1, -1, /* upper */
- cbit_digit, cbit_lower, cbit_upper, /* alnum */
- cbit_print, cbit_cntrl, -1, /* ascii */
- cbit_cntrl, -1, -1, /* cntrl */
- cbit_digit, -1, -1, /* digit */
- cbit_graph, -1, -1, /* graph */
- cbit_print, -1, -1, /* print */
- cbit_punct, -1, -1, /* punct */
- cbit_space, -1, -1, /* space */
- cbit_word, -1, -1, /* word */
- cbit_xdigit,-1, -1 /* xdigit */
-};
-
-
-/* Definition to allow mutual recursion */
-
-static BOOL
- compile_regex(int, int, int *, uschar **, const uschar **, const char **,
- BOOL, int, int *, int *, compile_data *);
-
-/* Structure for building a chain of data that actually lives on the
-stack, for holding the values of the subject pointer at the start of each
-subpattern, so as to detect when an empty string has been matched by a
-subpattern - to break infinite loops. */
-
-typedef struct eptrblock {
- struct eptrblock *prev;
- const uschar *saved_eptr;
-} eptrblock;
-
-/* Flag bits for the match() function */
-
-#define match_condassert 0x01 /* Called to check a condition assertion */
-#define match_isgroup 0x02 /* Set if start of bracketed group */
-
-
-
-/*************************************************
-* Global variables *
-*************************************************/
-
-/* PCRE is thread-clean and doesn't use any global variables in the normal
-sense. However, it calls memory allocation and free functions via the two
-indirections below, which are can be changed by the caller, but are shared
-between all threads. */
-
-void *(*pcre_malloc)(size_t) = malloc;
-void (*pcre_free)(void *) = free;
-
-
-
-/*************************************************
-* Macros and tables for character handling *
-*************************************************/
-
-/* When UTF-8 encoding is being used, a character is no longer just a single
-byte. The macros for character handling generate simple sequences when used in
-byte-mode, and more complicated ones for UTF-8 characters. */
-
-#ifndef SUPPORT_UTF8
-#define GETCHARINC(c, eptr) c = *eptr++;
-#define GETCHARLEN(c, eptr, len) c = *eptr;
-#define BACKCHAR(eptr)
-
-#else /* SUPPORT_UTF8 */
-
-/* Get the next UTF-8 character, advancing the pointer */
-
-#define GETCHARINC(c, eptr) \
- c = *eptr++; \
- if (md->utf8 && (c & 0xc0) == 0xc0) \
- { \
- int a = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \
- int s = 6 - a; /* Amount to shift next byte */ \
- c &= utf8_table3[a]; /* Low order bits from first byte */ \
- while (a-- > 0) \
- { \
- c |= (*eptr++ & 0x3f) << s; \
- s += 6; \
- } \
- }
-
-/* Get the next UTF-8 character, not advancing the pointer, setting length */
-
-#define GETCHARLEN(c, eptr, len) \
- c = *eptr; \
- len = 1; \
- if (md->utf8 && (c & 0xc0) == 0xc0) \
- { \
- int i; \
- int a = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \
- int s = 6 - a; /* Amount to shift next byte */ \
- c &= utf8_table3[a]; /* Low order bits from first byte */ \
- for (i = 1; i <= a; i++) \
- { \
- c |= (eptr[i] & 0x3f) << s; \
- s += 6; \
- } \
- len += a; \
- }
-
-/* If the pointer is not at the start of a character, move it back until
-it is. */
-
-#define BACKCHAR(eptr) while((*eptr & 0xc0) == 0x80) eptr--;
-
-#endif
-
-
-
-/*************************************************
-* Default character tables *
-*************************************************/
-
-/* A default set of character tables is included in the PCRE binary. Its source
-is built by the maketables auxiliary program, which uses the default C ctypes
-functions, and put in the file chartables.c. These tables are used by PCRE
-whenever the caller of pcre_compile() does not provide an alternate set of
-tables. */
-
-#include "chartables.c"
-
-
-
-#ifdef SUPPORT_UTF8
-/*************************************************
-* Tables for UTF-8 support *
-*************************************************/
-
-/* These are the breakpoints for different numbers of bytes in a UTF-8
-character. */
-
-static int utf8_table1[] = { 0x7f, 0x7ff, 0xffff, 0x1fffff, 0x3ffffff, 0x7fffffff};
-
-/* These are the indicator bits and the mask for the data bits to set in the
-first byte of a character, indexed by the number of additional bytes. */
-
-static int utf8_table2[] = { 0, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc};
-static int utf8_table3[] = { 0xff, 0x1f, 0x0f, 0x07, 0x03, 0x01};
-
-/* Table of the number of extra characters, indexed by the first character
-masked with 0x3f. The highest number for a valid UTF-8 character is in fact
-0x3d. */
-
-static uschar utf8_table4[] = {
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
- 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
- 3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5 };
-
-
-/*************************************************
-* Convert character value to UTF-8 *
-*************************************************/
-
-/* This function takes an integer value in the range 0 - 0x7fffffff
-and encodes it as a UTF-8 character in 0 to 6 bytes.
-
-Arguments:
- cvalue the character value
- buffer pointer to buffer for result - at least 6 bytes long
-
-Returns: number of characters placed in the buffer
-*/
-
-static int
-ord2utf8(int cvalue, uschar *buffer)
-{
-register int i, j;
-for (i = 0; i < sizeof(utf8_table1)/sizeof(int); i++)
- if (cvalue <= utf8_table1[i]) break;
-*buffer++ = utf8_table2[i] | (cvalue & utf8_table3[i]);
-cvalue >>= 6 - i;
-for (j = 0; j < i; j++)
- {
- *buffer++ = 0x80 | (cvalue & 0x3f);
- cvalue >>= 6;
- }
-return i + 1;
-}
-#endif
-
-
-
-/*************************************************
-* Return version string *
-*************************************************/
-
-#define STRING(a) # a
-#define XSTRING(s) STRING(s)
-
-const char *
-pcre_version(void)
-{
-return XSTRING(PCRE_MAJOR) "." XSTRING(PCRE_MINOR) " " XSTRING(PCRE_DATE);
-}
-
-
-
-
-/*************************************************
-* (Obsolete) Return info about compiled pattern *
-*************************************************/
-
-/* This is the original "info" function. It picks potentially useful data out
-of the private structure, but its interface was too rigid. It remains for
-backwards compatibility. The public options are passed back in an int - though
-the re->options field has been expanded to a long int, all the public options
-at the low end of it, and so even on 16-bit systems this will still be OK.
-Therefore, I haven't changed the API for pcre_info().
-
-Arguments:
- external_re points to compiled code
- optptr where to pass back the options
- first_char where to pass back the first character,
- or -1 if multiline and all branches start ^,
- or -2 otherwise
-
-Returns: number of capturing subpatterns
- or negative values on error
-*/
-
-int
-pcre_info(const pcre *external_re, int *optptr, int *first_char)
-{
-const real_pcre *re = (const real_pcre *)external_re;
-if (re == NULL) return PCRE_ERROR_NULL;
-if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
-if (optptr != NULL) *optptr = (int)(re->options & PUBLIC_OPTIONS);
-if (first_char != NULL)
- *first_char = ((re->options & PCRE_FIRSTSET) != 0)? re->first_char :
- ((re->options & PCRE_STARTLINE) != 0)? -1 : -2;
-return re->top_bracket;
-}
-
-
-
-/*************************************************
-* Return info about compiled pattern *
-*************************************************/
-
-/* This is a newer "info" function which has an extensible interface so
-that additional items can be added compatibly.
-
-Arguments:
- external_re points to compiled code
- external_study points to study data, or NULL
- what what information is required
- where where to put the information
-
-Returns: 0 if data returned, negative on error
-*/
-
-int
-pcre_fullinfo(const pcre *external_re, const pcre_extra *study_data, int what,
- void *where)
-{
-const real_pcre *re = (const real_pcre *)external_re;
-const real_pcre_extra *study = (const real_pcre_extra *)study_data;
-
-if (re == NULL || where == NULL) return PCRE_ERROR_NULL;
-if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
-
-switch (what)
- {
- case PCRE_INFO_OPTIONS:
- *((unsigned long int *)where) = re->options & PUBLIC_OPTIONS;
- break;
-
- case PCRE_INFO_SIZE:
- *((size_t *)where) = re->size;
- break;
-
- case PCRE_INFO_CAPTURECOUNT:
- *((int *)where) = re->top_bracket;
- break;
-
- case PCRE_INFO_BACKREFMAX:
- *((int *)where) = re->top_backref;
- break;
-
- case PCRE_INFO_FIRSTCHAR:
- *((int *)where) =
- ((re->options & PCRE_FIRSTSET) != 0)? re->first_char :
- ((re->options & PCRE_STARTLINE) != 0)? -1 : -2;
- break;
-
- case PCRE_INFO_FIRSTTABLE:
- *((const uschar **)where) =
- (study != NULL && (study->options & PCRE_STUDY_MAPPED) != 0)?
- study->start_bits : NULL;
- break;
-
- case PCRE_INFO_LASTLITERAL:
- *((int *)where) =
- ((re->options & PCRE_REQCHSET) != 0)? re->req_char : -1;
- break;
-
- default: return PCRE_ERROR_BADOPTION;
- }
-
-return 0;
-}
-
-
-
-#ifdef DEBUG
-/*************************************************
-* Debugging function to print chars *
-*************************************************/
-
-/* Print a sequence of chars in printable format, stopping at the end of the
-subject if the requested.
-
-Arguments:
- p points to characters
- length number to print
- is_subject TRUE if printing from within md->start_subject
- md pointer to matching data block, if is_subject is TRUE
-
-Returns: nothing
-*/
-
-static void
-pchars(const uschar *p, int length, BOOL is_subject, match_data *md)
-{
-int c;
-if (is_subject && length > md->end_subject - p) length = md->end_subject - p;
-while (length-- > 0)
- if (isprint(c = *(p++))) printf("%c", c); else printf("\\x%02x", c);
-}
-#endif
-
-
-
-
-/*************************************************
-* Handle escapes *
-*************************************************/
-
-/* This function is called when a \ has been encountered. It either returns a
-positive value for a simple escape such as \n, or a negative value which
-encodes one of the more complicated things such as \d. When UTF-8 is enabled,
-a positive value greater than 255 may be returned. On entry, ptr is pointing at
-the \. On exit, it is on the final character of the escape sequence.
-
-Arguments:
- ptrptr points to the pattern position pointer
- errorptr points to the pointer to the error message
- bracount number of previous extracting brackets
- options the options bits
- isclass TRUE if inside a character class
- cd pointer to char tables block
-
-Returns: zero or positive => a data character
- negative => a special escape sequence
- on error, errorptr is set
-*/
-
-static int
-check_escape(const uschar **ptrptr, const char **errorptr, int bracount,
- int options, BOOL isclass, compile_data *cd)
-{
-const uschar *ptr = *ptrptr;
-int c, i;
-
-/* If backslash is at the end of the pattern, it's an error. */
-
-c = *(++ptr);
-if (c == 0) *errorptr = ERR1;
-
-/* Digits or letters may have special meaning; all others are literals. */
-
-else if (c < '0' || c > 'z') {}
-
-/* Do an initial lookup in a table. A non-zero result is something that can be
-returned immediately. Otherwise further processing may be required. */
-
-else if ((i = escapes[c - '0']) != 0) c = i;
-
-/* Escapes that need further processing, or are illegal. */
-
-else
- {
- const uschar *oldptr;
- switch (c)
- {
- /* The handling of escape sequences consisting of a string of digits
- starting with one that is not zero is not straightforward. By experiment,
- the way Perl works seems to be as follows:
-
- Outside a character class, the digits are read as a decimal number. If the
- number is less than 10, or if there are that many previous extracting
- left brackets, then it is a back reference. Otherwise, up to three octal
- digits are read to form an escaped byte. Thus \123 is likely to be octal
- 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
- value is greater than 377, the least significant 8 bits are taken. Inside a
- character class, \ followed by a digit is always an octal number. */
-
- case '1': case '2': case '3': case '4': case '5':
- case '6': case '7': case '8': case '9':
-
- if (!isclass)
- {
- oldptr = ptr;
- c -= '0';
- while ((cd->ctypes[ptr[1]] & ctype_digit) != 0)
- c = c * 10 + *(++ptr) - '0';
- if (c < 10 || c <= bracount)
- {
- c = -(ESC_REF + c);
- break;
- }
- ptr = oldptr; /* Put the pointer back and fall through */
- }
-
- /* Handle an octal number following \. If the first digit is 8 or 9, Perl
- generates a binary zero byte and treats the digit as a following literal.
- Thus we have to pull back the pointer by one. */
-
- if ((c = *ptr) >= '8')
- {
- ptr--;
- c = 0;
- break;
- }
-
- /* \0 always starts an octal number, but we may drop through to here with a
- larger first octal digit. */
-
- case '0':
- c -= '0';
- while(i++ < 2 && (cd->ctypes[ptr[1]] & ctype_digit) != 0 &&
- ptr[1] != '8' && ptr[1] != '9')
- c = c * 8 + *(++ptr) - '0';
- c &= 255; /* Take least significant 8 bits */
- break;
-
- /* \x is complicated when UTF-8 is enabled. \x{ddd} is a character number
- which can be greater than 0xff, but only if the ddd are hex digits. */
-
- case 'x':
-#ifdef SUPPORT_UTF8
- if (ptr[1] == '{' && (options & PCRE_UTF8) != 0)
- {
- const uschar *pt = ptr + 2;
- register int count = 0;
- c = 0;
- while ((cd->ctypes[*pt] & ctype_xdigit) != 0)
- {
- count++;
- c = c * 16 + cd->lcc[*pt] -
- (((cd->ctypes[*pt] & ctype_digit) != 0)? '0' : 'W');
- pt++;
- }
- if (*pt == '}')
- {
- if (c < 0 || count > 8) *errorptr = ERR34;
- ptr = pt;
- break;
- }
- /* If the sequence of hex digits does not end with '}', then we don't
- recognize this construct; fall through to the normal \x handling. */
- }
-#endif
-
- /* Read just a single hex char */
-
- c = 0;
- while (i++ < 2 && (cd->ctypes[ptr[1]] & ctype_xdigit) != 0)
- {
- ptr++;
- c = c * 16 + cd->lcc[*ptr] -
- (((cd->ctypes[*ptr] & ctype_digit) != 0)? '0' : 'W');
- }
- break;
-
- /* Other special escapes not starting with a digit are straightforward */
-
- case 'c':
- c = *(++ptr);
- if (c == 0)
- {
- *errorptr = ERR2;
- return 0;
- }
-
- /* A letter is upper-cased; then the 0x40 bit is flipped */
-
- if (c >= 'a' && c <= 'z') c = cd->fcc[c];
- c ^= 0x40;
- break;
-
- /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
- other alphameric following \ is an error if PCRE_EXTRA was set; otherwise,
- for Perl compatibility, it is a literal. This code looks a bit odd, but
- there used to be some cases other than the default, and there may be again
- in future, so I haven't "optimized" it. */
-
- default:
- if ((options & PCRE_EXTRA) != 0) switch(c)
- {
- default:
- *errorptr = ERR3;
- break;
- }
- break;
- }
- }
-
-*ptrptr = ptr;
-return c;
-}
-
-
-
-/*************************************************
-* Check for counted repeat *
-*************************************************/
-
-/* This function is called when a '{' is encountered in a place where it might
-start a quantifier. It looks ahead to see if it really is a quantifier or not.
-It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
-where the ddds are digits.
-
-Arguments:
- p pointer to the first char after '{'
- cd pointer to char tables block
-
-Returns: TRUE or FALSE
-*/
-
-static BOOL
-is_counted_repeat(const uschar *p, compile_data *cd)
-{
-if ((cd->ctypes[*p++] & ctype_digit) == 0) return FALSE;
-while ((cd->ctypes[*p] & ctype_digit) != 0) p++;
-if (*p == '}') return TRUE;
-
-if (*p++ != ',') return FALSE;
-if (*p == '}') return TRUE;
-
-if ((cd->ctypes[*p++] & ctype_digit) == 0) return FALSE;
-while ((cd->ctypes[*p] & ctype_digit) != 0) p++;
-return (*p == '}');
-}
-
-
-
-/*************************************************
-* Read repeat counts *
-*************************************************/
-
-/* Read an item of the form {n,m} and return the values. This is called only
-after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
-so the syntax is guaranteed to be correct, but we need to check the values.
-
-Arguments:
- p pointer to first char after '{'
- minp pointer to int for min
- maxp pointer to int for max
- returned as -1 if no max
- errorptr points to pointer to error message
- cd pointer to character tables clock
-
-Returns: pointer to '}' on success;
- current ptr on error, with errorptr set
-*/
-
-static const uschar *
-read_repeat_counts(const uschar *p, int *minp, int *maxp,
- const char **errorptr, compile_data *cd)
-{
-int min = 0;
-int max = -1;
-
-while ((cd->ctypes[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0';
-
-if (*p == '}') max = min; else
- {
- if (*(++p) != '}')
- {
- max = 0;
- while((cd->ctypes[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0';
- if (max < min)
- {
- *errorptr = ERR4;
- return p;
- }
- }
- }
-
-/* Do paranoid checks, then fill in the required variables, and pass back the
-pointer to the terminating '}'. */
-
-if (min < 0 || min > 65535 || max < -1 || max > 65535)
- *errorptr = ERR5;
-else
- {
- *minp = min;
- *maxp = max;
- }
-return p;
-}
-
-
-
-/*************************************************
-* Find the fixed length of a pattern *
-*************************************************/
-
-/* Scan a pattern and compute the fixed length of subject that will match it,
-if the length is fixed. This is needed for dealing with backward assertions.
-
-Arguments:
- code points to the start of the pattern (the bracket)
- options the compiling options
-
-Returns: the fixed length, or -1 if there is no fixed length
-*/
-
-static int
-find_fixedlength(uschar *code, int options)
-{
-int length = -1;
-
-register int branchlength = 0;
-register uschar *cc = code + 3;
-
-/* Scan along the opcodes for this branch. If we get to the end of the
-branch, check the length against that of the other branches. */
-
-for (;;)
- {
- int d;
- register int op = *cc;
- if (op >= OP_BRA) op = OP_BRA;
-
- switch (op)
- {
- case OP_BRA:
- case OP_ONCE:
- case OP_COND:
- d = find_fixedlength(cc, options);
- if (d < 0) return -1;
- branchlength += d;
- do cc += (cc[1] << 8) + cc[2]; while (*cc == OP_ALT);
- cc += 3;
- break;
-
- /* Reached end of a branch; if it's a ket it is the end of a nested
- call. If it's ALT it is an alternation in a nested call. If it is
- END it's the end of the outer call. All can be handled by the same code. */
-
- case OP_ALT:
- case OP_KET:
- case OP_KETRMAX:
- case OP_KETRMIN:
- case OP_END:
- if (length < 0) length = branchlength;
- else if (length != branchlength) return -1;
- if (*cc != OP_ALT) return length;
- cc += 3;
- branchlength = 0;
- break;
-
- /* Skip over assertive subpatterns */
-
- case OP_ASSERT:
- case OP_ASSERT_NOT:
- case OP_ASSERTBACK:
- case OP_ASSERTBACK_NOT:
- do cc += (cc[1] << 8) + cc[2]; while (*cc == OP_ALT);
- cc += 3;
- break;
-
- /* Skip over things that don't match chars */
-
- case OP_REVERSE:
- cc++;
- /* Fall through */
-
- case OP_CREF:
- case OP_OPT:
- cc++;
- /* Fall through */
-
- case OP_SOD:
- case OP_EOD:
- case OP_EODN:
- case OP_CIRC:
- case OP_DOLL:
- case OP_NOT_WORD_BOUNDARY:
- case OP_WORD_BOUNDARY:
- cc++;
- break;
-
- /* Handle char strings. In UTF-8 mode we must count characters, not bytes.
- This requires a scan of the string, unfortunately. We assume valid UTF-8
- strings, so all we do is reduce the length by one for byte whose bits are
- 10xxxxxx. */
-
- case OP_CHARS:
- branchlength += *(++cc);
-#ifdef SUPPORT_UTF8
- for (d = 1; d <= *cc; d++)
- if ((cc[d] & 0xc0) == 0x80) branchlength--;
-#endif
- cc += *cc + 1;
- break;
-
- /* Handle exact repetitions */
-
- case OP_EXACT:
- case OP_TYPEEXACT:
- branchlength += (cc[1] << 8) + cc[2];
- cc += 4;
- break;
-
- /* Handle single-char matchers */
-
- case OP_NOT_DIGIT:
- case OP_DIGIT:
- case OP_NOT_WHITESPACE:
- case OP_WHITESPACE:
- case OP_NOT_WORDCHAR:
- case OP_WORDCHAR:
- case OP_ANY:
- branchlength++;
- cc++;
- break;
-
-
- /* Check a class for variable quantification */
-
- case OP_CLASS:
- cc += (*cc == OP_REF)? 2 : 33;
-
- switch (*cc)
- {
- case OP_CRSTAR:
- case OP_CRMINSTAR:
- case OP_CRQUERY:
- case OP_CRMINQUERY:
- return -1;
-
- case OP_CRRANGE:
- case OP_CRMINRANGE:
- if ((cc[1] << 8) + cc[2] != (cc[3] << 8) + cc[4]) return -1;
- branchlength += (cc[1] << 8) + cc[2];
- cc += 5;
- break;
-
- default:
- branchlength++;
- }
- break;
-
- /* Anything else is variable length */
-
- default:
- return -1;
- }
- }
-/* Control never gets here */
-}
-
-
-
-
-/*************************************************
-* Check for POSIX class syntax *
-*************************************************/
-
-/* This function is called when the sequence "[:" or "[." or "[=" is
-encountered in a character class. It checks whether this is followed by an
-optional ^ and then a sequence of letters, terminated by a matching ":]" or
-".]" or "=]".
-
-Argument:
- ptr pointer to the initial [
- endptr where to return the end pointer
- cd pointer to compile data
-
-Returns: TRUE or FALSE
-*/
-
-static BOOL
-check_posix_syntax(const uschar *ptr, const uschar **endptr, compile_data *cd)
-{
-int terminator; /* Don't combine these lines; the Solaris cc */
-terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
-if (*(++ptr) == '^') ptr++;
-while ((cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
-if (*ptr == terminator && ptr[1] == ']')
- {
- *endptr = ptr;
- return TRUE;
- }
-return FALSE;
-}
-
-
-
-
-/*************************************************
-* Check POSIX class name *
-*************************************************/
-
-/* This function is called to check the name given in a POSIX-style class entry
-such as [:alnum:].
-
-Arguments:
- ptr points to the first letter
- len the length of the name
-
-Returns: a value representing the name, or -1 if unknown
-*/
-
-static int
-check_posix_name(const uschar *ptr, int len)
-{
-register int yield = 0;
-while (posix_name_lengths[yield] != 0)
- {
- if (len == posix_name_lengths[yield] &&
- strncmp((const char *)ptr, posix_names[yield], len) == 0) return yield;
- yield++;
- }
-return -1;
-}
-
-
-
-
-/*************************************************
-* Compile one branch *
-*************************************************/
-
-/* Scan the pattern, compiling it into the code vector.
-
-Arguments:
- options the option bits
- brackets points to number of brackets used
- code points to the pointer to the current code point
- ptrptr points to the current pattern pointer
- errorptr points to pointer to error message
- optchanged set to the value of the last OP_OPT item compiled
- reqchar set to the last literal character required, else -1
- countlits set to count of mandatory literal characters
- cd contains pointers to tables
-
-Returns: TRUE on success
- FALSE, with *errorptr set on error
-*/
-
-static BOOL
-compile_branch(int options, int *brackets, uschar **codeptr,
- const uschar **ptrptr, const char **errorptr, int *optchanged,
- int *reqchar, int *countlits, compile_data *cd)
-{
-int repeat_type, op_type;
-int repeat_min, repeat_max;
-int bravalue, length;
-int greedy_default, greedy_non_default;
-int prevreqchar;
-int condcount = 0;
-int subcountlits = 0;
-register int c;
-register uschar *code = *codeptr;
-uschar *tempcode;
-const uschar *ptr = *ptrptr;
-const uschar *tempptr;
-uschar *previous = NULL;
-uschar class[32];
-
-/* Set up the default and non-default settings for greediness */
-
-greedy_default = ((options & PCRE_UNGREEDY) != 0);
-greedy_non_default = greedy_default ^ 1;
-
-/* Initialize no required char, and count of literals */
-
-*reqchar = prevreqchar = -1;
-*countlits = 0;
-
-/* Switch on next character until the end of the branch */
-
-for (;; ptr++)
- {
- BOOL negate_class;
- int class_charcount;
- int class_lastchar;
- int newoptions;
- int condref;
- int subreqchar;
-
- c = *ptr;
- if ((options & PCRE_EXTENDED) != 0)
- {
- if ((cd->ctypes[c] & ctype_space) != 0) continue;
- if (c == '#')
- {
- /* The space before the ; is to avoid a warning on a silly compiler
- on the Macintosh. */
- while ((c = *(++ptr)) != 0 && c != '\n') ;
- continue;
- }
- }
-
- switch(c)
- {
- /* The branch terminates at end of string, |, or ). */
-
- case 0:
- case '|':
- case ')':
- *codeptr = code;
- *ptrptr = ptr;
- return TRUE;
-
- /* Handle single-character metacharacters */
-
- case '^':
- previous = NULL;
- *code++ = OP_CIRC;
- break;
-
- case '$':
- previous = NULL;
- *code++ = OP_DOLL;
- break;
-
- case '.':
- previous = code;
- *code++ = OP_ANY;
- break;
-
- /* Character classes. These always build a 32-byte bitmap of the permitted
- characters, except in the special case where there is only one character.
- For negated classes, we build the map as usual, then invert it at the end.
- */
-
- case '[':
- previous = code;
- *code++ = OP_CLASS;
-
- /* If the first character is '^', set the negation flag and skip it. */
-
- if ((c = *(++ptr)) == '^')
- {
- negate_class = TRUE;
- c = *(++ptr);
- }
- else negate_class = FALSE;
-
- /* Keep a count of chars so that we can optimize the case of just a single
- character. */
-
- class_charcount = 0;
- class_lastchar = -1;
-
- /* Initialize the 32-char bit map to all zeros. We have to build the
- map in a temporary bit of store, in case the class contains only 1
- character, because in that case the compiled code doesn't use the
- bit map. */
-
- memset(class, 0, 32 * sizeof(uschar));
-
- /* Process characters until ] is reached. By writing this as a "do" it
- means that an initial ] is taken as a data character. */
-
- do
- {
- if (c == 0)
- {
- *errorptr = ERR6;
- goto FAILED;
- }
-
- /* Handle POSIX class names. Perl allows a negation extension of the
- form [:^name]. A square bracket that doesn't match the syntax is
- treated as a literal. We also recognize the POSIX constructions
- [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
- 5.6 does. */
-
- if (c == '[' &&
- (ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
- check_posix_syntax(ptr, &tempptr, cd))
- {
- BOOL local_negate = FALSE;
- int posix_class, i;
- register const uschar *cbits = cd->cbits;
-
- if (ptr[1] != ':')
- {
- *errorptr = ERR31;
- goto FAILED;
- }
-
- ptr += 2;
- if (*ptr == '^')
- {
- local_negate = TRUE;
- ptr++;
- }
-
- posix_class = check_posix_name(ptr, tempptr - ptr);
- if (posix_class < 0)
- {
- *errorptr = ERR30;
- goto FAILED;
- }
-
- /* If matching is caseless, upper and lower are converted to
- alpha. This relies on the fact that the class table starts with
- alpha, lower, upper as the first 3 entries. */
-
- if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
- posix_class = 0;
-
- /* Or into the map we are building up to 3 of the static class
- tables, or their negations. */
-
- posix_class *= 3;
- for (i = 0; i < 3; i++)
- {
- int taboffset = posix_class_maps[posix_class + i];
- if (taboffset < 0) break;
- if (local_negate)
- for (c = 0; c < 32; c++) class[c] |= ~cbits[c+taboffset];
- else
- for (c = 0; c < 32; c++) class[c] |= cbits[c+taboffset];
- }
-
- ptr = tempptr + 1;
- class_charcount = 10; /* Set > 1; assumes more than 1 per class */
- continue;
- }
-
- /* Backslash may introduce a single character, or it may introduce one
- of the specials, which just set a flag. Escaped items are checked for
- validity in the pre-compiling pass. The sequence \b is a special case.
- Inside a class (and only there) it is treated as backspace. Elsewhere
- it marks a word boundary. Other escapes have preset maps ready to
- or into the one we are building. We assume they have more than one
- character in them, so set class_count bigger than one. */
-
- if (c == '\\')
- {
- c = check_escape(&ptr, errorptr, *brackets, options, TRUE, cd);
- if (-c == ESC_b) c = '\b';
- else if (c < 0)
- {
- register const uschar *cbits = cd->cbits;
- class_charcount = 10;
- switch (-c)
- {
- case ESC_d:
- for (c = 0; c < 32; c++) class[c] |= cbits[c+cbit_digit];
- continue;
-
- case ESC_D:
- for (c = 0; c < 32; c++) class[c] |= ~cbits[c+cbit_digit];
- continue;
-
- case ESC_w:
- for (c = 0; c < 32; c++) class[c] |= cbits[c+cbit_word];
- continue;
-
- case ESC_W:
- for (c = 0; c < 32; c++) class[c] |= ~cbits[c+cbit_word];
- continue;
-
- case ESC_s:
- for (c = 0; c < 32; c++) class[c] |= cbits[c+cbit_space];
- continue;
-
- case ESC_S:
- for (c = 0; c < 32; c++) class[c] |= ~cbits[c+cbit_space];
- continue;
-
- default:
- *errorptr = ERR7;
- goto FAILED;
- }
- }
-
- /* Fall through if single character, but don't at present allow
- chars > 255 in UTF-8 mode. */
-
-#ifdef SUPPORT_UTF8
- if (c > 255)
- {
- *errorptr = ERR33;
- goto FAILED;
- }
-#endif
- }
-
- /* A single character may be followed by '-' to form a range. However,
- Perl does not permit ']' to be the end of the range. A '-' character
- here is treated as a literal. */
-
- if (ptr[1] == '-' && ptr[2] != ']')
- {
- int d;
- ptr += 2;
- d = *ptr;
-
- if (d == 0)
- {
- *errorptr = ERR6;
- goto FAILED;
- }
-
- /* The second part of a range can be a single-character escape, but
- not any of the other escapes. Perl 5.6 treats a hyphen as a literal
- in such circumstances. */
-
- if (d == '\\')
- {
- const uschar *oldptr = ptr;
- d = check_escape(&ptr, errorptr, *brackets, options, TRUE, cd);
-
-#ifdef SUPPORT_UTF8
- if (d > 255)
- {
- *errorptr = ERR33;
- goto FAILED;
- }
-#endif
- /* \b is backslash; any other special means the '-' was literal */
-
- if (d < 0)
- {
- if (d == -ESC_b) d = '\b'; else
- {
- ptr = oldptr - 2;
- goto SINGLE_CHARACTER; /* A few lines below */
- }
- }
- }
-
- if (d < c)
- {
- *errorptr = ERR8;
- goto FAILED;
- }
-
- for (; c <= d; c++)
- {
- class[c/8] |= (1 << (c&7));
- if ((options & PCRE_CASELESS) != 0)
- {
- int uc = cd->fcc[c]; /* flip case */
- class[uc/8] |= (1 << (uc&7));
- }
- class_charcount++; /* in case a one-char range */
- class_lastchar = c;
- }
- continue; /* Go get the next char in the class */
- }
-
- /* Handle a lone single character - we can get here for a normal
- non-escape char, or after \ that introduces a single character. */
-
- SINGLE_CHARACTER:
-
- class [c/8] |= (1 << (c&7));
- if ((options & PCRE_CASELESS) != 0)
- {
- c = cd->fcc[c]; /* flip case */
- class[c/8] |= (1 << (c&7));
- }
- class_charcount++;
- class_lastchar = c;
- }
-
- /* Loop until ']' reached; the check for end of string happens inside the
- loop. This "while" is the end of the "do" above. */
-
- while ((c = *(++ptr)) != ']');
-
- /* If class_charcount is 1 and class_lastchar is not negative, we saw
- precisely one character. This doesn't need the whole 32-byte bit map.
- We turn it into a 1-character OP_CHAR if it's positive, or OP_NOT if
- it's negative. */
-
- if (class_charcount == 1 && class_lastchar >= 0)
- {
- if (negate_class)
- {
- code[-1] = OP_NOT;
- }
- else
- {
- code[-1] = OP_CHARS;
- *code++ = 1;
- }
- *code++ = class_lastchar;
- }
-
- /* Otherwise, negate the 32-byte map if necessary, and copy it into
- the code vector. */
-
- else
- {
- if (negate_class)
- for (c = 0; c < 32; c++) code[c] = ~class[c];
- else
- memcpy(code, class, 32);
- code += 32;
- }
- break;
-
- /* Various kinds of repeat */
-
- case '{':
- if (!is_counted_repeat(ptr+1, cd)) goto NORMAL_CHAR;
- ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorptr, cd);
- if (*errorptr != NULL) goto FAILED;
- goto REPEAT;
-
- case '*':
- repeat_min = 0;
- repeat_max = -1;
- goto REPEAT;
-
- case '+':
- repeat_min = 1;
- repeat_max = -1;
- goto REPEAT;
-
- case '?':
- repeat_min = 0;
- repeat_max = 1;
-
- REPEAT:
- if (previous == NULL)
- {
- *errorptr = ERR9;
- goto FAILED;
- }
-
- /* If the next character is '?' this is a minimizing repeat, by default,
- but if PCRE_UNGREEDY is set, it works the other way round. Advance to the
- next character. */
-
- if (ptr[1] == '?')
- { repeat_type = greedy_non_default; ptr++; }
- else repeat_type = greedy_default;
-
- /* If previous was a string of characters, chop off the last one and use it
- as the subject of the repeat. If there was only one character, we can
- abolish the previous item altogether. A repeat with a zero minimum wipes
- out any reqchar setting, backing up to the previous value. We must also
- adjust the countlits value. */
-
- if (*previous == OP_CHARS)
- {
- int len = previous[1];
-
- if (repeat_min == 0) *reqchar = prevreqchar;
- *countlits += repeat_min - 1;
-
- if (len == 1)
- {
- c = previous[2];
- code = previous;
- }
- else
- {
- c = previous[len+1];
- previous[1]--;
- code--;
- }
- op_type = 0; /* Use single-char op codes */
- goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
- }
-
- /* If previous was a single negated character ([^a] or similar), we use
- one of the special opcodes, replacing it. The code is shared with single-
- character repeats by adding a suitable offset into repeat_type. */
-
- else if ((int)*previous == OP_NOT)
- {
- op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
- c = previous[1];
- code = previous;
- goto OUTPUT_SINGLE_REPEAT;
- }
-
- /* If previous was a character type match (\d or similar), abolish it and
- create a suitable repeat item. The code is shared with single-character
- repeats by adding a suitable offset into repeat_type. */
-
- else if ((int)*previous < OP_EODN || *previous == OP_ANY)
- {
- op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
- c = *previous;
- code = previous;
-
- OUTPUT_SINGLE_REPEAT:
-
- /* If the maximum is zero then the minimum must also be zero; Perl allows
- this case, so we do too - by simply omitting the item altogether. */
-
- if (repeat_max == 0) goto END_REPEAT;
-
- /* Combine the op_type with the repeat_type */
-
- repeat_type += op_type;
-
- /* A minimum of zero is handled either as the special case * or ?, or as
- an UPTO, with the maximum given. */
-
- if (repeat_min == 0)
- {
- if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
- else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
- else
- {
- *code++ = OP_UPTO + repeat_type;
- *code++ = repeat_max >> 8;
- *code++ = (repeat_max & 255);
- }
- }
-
- /* The case {1,} is handled as the special case + */
-
- else if (repeat_min == 1 && repeat_max == -1)
- *code++ = OP_PLUS + repeat_type;
-
- /* The case {n,n} is just an EXACT, while the general case {n,m} is
- handled as an EXACT followed by an UPTO. An EXACT of 1 is optimized. */
-
- else
- {
- if (repeat_min != 1)
- {
- *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
- *code++ = repeat_min >> 8;
- *code++ = (repeat_min & 255);
- }
-
- /* If the mininum is 1 and the previous item was a character string,
- we either have to put back the item that got cancelled if the string
- length was 1, or add the character back onto the end of a longer
- string. For a character type nothing need be done; it will just get
- put back naturally. Note that the final character is always going to
- get added below. */
-
- else if (*previous == OP_CHARS)
- {
- if (code == previous) code += 2; else previous[1]++;
- }
-
- /* For a single negated character we also have to put back the
- item that got cancelled. */
-
- else if (*previous == OP_NOT) code++;
-
- /* If the maximum is unlimited, insert an OP_STAR. */
-
- if (repeat_max < 0)
- {
- *code++ = c;
- *code++ = OP_STAR + repeat_type;
- }
-
- /* Else insert an UPTO if the max is greater than the min. */
-
- else if (repeat_max != repeat_min)
- {
- *code++ = c;
- repeat_max -= repeat_min;
- *code++ = OP_UPTO + repeat_type;
- *code++ = repeat_max >> 8;
- *code++ = (repeat_max & 255);
- }
- }
-
- /* The character or character type itself comes last in all cases. */
-
- *code++ = c;
- }
-
- /* If previous was a character class or a back reference, we put the repeat
- stuff after it, but just skip the item if the repeat was {0,0}. */
-
- else if (*previous == OP_CLASS || *previous == OP_REF)
- {
- if (repeat_max == 0)
- {
- code = previous;
- goto END_REPEAT;
- }
- if (repeat_min == 0 && repeat_max == -1)
- *code++ = OP_CRSTAR + repeat_type;
- else if (repeat_min == 1 && repeat_max == -1)
- *code++ = OP_CRPLUS + repeat_type;
- else if (repeat_min == 0 && repeat_max == 1)
- *code++ = OP_CRQUERY + repeat_type;
- else
- {
- *code++ = OP_CRRANGE + repeat_type;
- *code++ = repeat_min >> 8;
- *code++ = repeat_min & 255;
- if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
- *code++ = repeat_max >> 8;
- *code++ = repeat_max & 255;
- }
- }
-
- /* If previous was a bracket group, we may have to replicate it in certain
- cases. */
-
- else if ((int)*previous >= OP_BRA || (int)*previous == OP_ONCE ||
- (int)*previous == OP_COND)
- {
- register int i;
- int ketoffset = 0;
- int len = code - previous;
- uschar *bralink = NULL;
-
- /* If the maximum repeat count is unlimited, find the end of the bracket
- by scanning through from the start, and compute the offset back to it
- from the current code pointer. There may be an OP_OPT setting following
- the final KET, so we can't find the end just by going back from the code
- pointer. */
-
- if (repeat_max == -1)
- {
- register uschar *ket = previous;
- do ket += (ket[1] << 8) + ket[2]; while (*ket != OP_KET);
- ketoffset = code - ket;
- }
-
- /* The case of a zero minimum is special because of the need to stick
- OP_BRAZERO in front of it, and because the group appears once in the
- data, whereas in other cases it appears the minimum number of times. For
- this reason, it is simplest to treat this case separately, as otherwise
- the code gets far too mess. There are several special subcases when the
- minimum is zero. */
-
- if (repeat_min == 0)
- {
- /* If we set up a required char from the bracket, we must back off
- to the previous value and reset the countlits value too. */
-
- if (subcountlits > 0)
- {
- *reqchar = prevreqchar;
- *countlits -= subcountlits;
- }
-
- /* If the maximum is also zero, we just omit the group from the output
- altogether. */
-
- if (repeat_max == 0)
- {
- code = previous;
- goto END_REPEAT;
- }
-
- /* If the maximum is 1 or unlimited, we just have to stick in the
- BRAZERO and do no more at this point. */
-
- if (repeat_max <= 1)
- {
- memmove(previous+1, previous, len);
- code++;
- *previous++ = OP_BRAZERO + repeat_type;
- }
-
- /* If the maximum is greater than 1 and limited, we have to replicate
- in a nested fashion, sticking OP_BRAZERO before each set of brackets.
- The first one has to be handled carefully because it's the original
- copy, which has to be moved up. The remainder can be handled by code
- that is common with the non-zero minimum case below. We just have to
- adjust the value or repeat_max, since one less copy is required. */
-
- else
- {
- int offset;
- memmove(previous+4, previous, len);
- code += 4;
- *previous++ = OP_BRAZERO + repeat_type;
- *previous++ = OP_BRA;
-
- /* We chain together the bracket offset fields that have to be
- filled in later when the ends of the brackets are reached. */
-
- offset = (bralink == NULL)? 0 : previous - bralink;
- bralink = previous;
- *previous++ = offset >> 8;
- *previous++ = offset & 255;
- }
-
- repeat_max--;
- }
-
- /* If the minimum is greater than zero, replicate the group as many
- times as necessary, and adjust the maximum to the number of subsequent
- copies that we need. */
-
- else
- {
- for (i = 1; i < repeat_min; i++)
- {
- memcpy(code, previous, len);
- code += len;
- }
- if (repeat_max > 0) repeat_max -= repeat_min;
- }
-
- /* This code is common to both the zero and non-zero minimum cases. If
- the maximum is limited, it replicates the group in a nested fashion,
- remembering the bracket starts on a stack. In the case of a zero minimum,
- the first one was set up above. In all cases the repeat_max now specifies
- the number of additional copies needed. */
-
- if (repeat_max >= 0)
- {
- for (i = repeat_max - 1; i >= 0; i--)
- {
- *code++ = OP_BRAZERO + repeat_type;
-
- /* All but the final copy start a new nesting, maintaining the
- chain of brackets outstanding. */
-
- if (i != 0)
- {
- int offset;
- *code++ = OP_BRA;
- offset = (bralink == NULL)? 0 : code - bralink;
- bralink = code;
- *code++ = offset >> 8;
- *code++ = offset & 255;
- }
-
- memcpy(code, previous, len);
- code += len;
- }
-
- /* Now chain through the pending brackets, and fill in their length
- fields (which are holding the chain links pro tem). */
-
- while (bralink != NULL)
- {
- int oldlinkoffset;
- int offset = code - bralink + 1;
- uschar *bra = code - offset;
- oldlinkoffset = (bra[1] << 8) + bra[2];
- bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
- *code++ = OP_KET;
- *code++ = bra[1] = offset >> 8;
- *code++ = bra[2] = (offset & 255);
- }
- }
-
- /* If the maximum is unlimited, set a repeater in the final copy. We
- can't just offset backwards from the current code point, because we
- don't know if there's been an options resetting after the ket. The
- correct offset was computed above. */
-
- else code[-ketoffset] = OP_KETRMAX + repeat_type;
- }
-
- /* Else there's some kind of shambles */
-
- else
- {
- *errorptr = ERR11;
- goto FAILED;
- }
-
- /* In all case we no longer have a previous item. */
-
- END_REPEAT:
- previous = NULL;
- break;
-
-
- /* Start of nested bracket sub-expression, or comment or lookahead or
- lookbehind or option setting or condition. First deal with special things
- that can come after a bracket; all are introduced by ?, and the appearance
- of any of them means that this is not a referencing group. They were
- checked for validity in the first pass over the string, so we don't have to
- check for syntax errors here. */
-
- case '(':
- newoptions = options;
- condref = -1;
-
- if (*(++ptr) == '?')
- {
- int set, unset;
- int *optset;
-
- switch (*(++ptr))
- {
- case '#': /* Comment; skip to ket */
- ptr++;
- while (*ptr != ')') ptr++;
- continue;
-
- case ':': /* Non-extracting bracket */
- bravalue = OP_BRA;
- ptr++;
- break;
-
- case '(':
- bravalue = OP_COND; /* Conditional group */
- if ((cd->ctypes[*(++ptr)] & ctype_digit) != 0)
- {
- condref = *ptr - '0';
- while (*(++ptr) != ')') condref = condref*10 + *ptr - '0';
- if (condref == 0)
- {
- *errorptr = ERR35;
- goto FAILED;
- }
- ptr++;
- }
- else ptr--;
- break;
-
- case '=': /* Positive lookahead */
- bravalue = OP_ASSERT;
- ptr++;
- break;
-
- case '!': /* Negative lookahead */
- bravalue = OP_ASSERT_NOT;
- ptr++;
- break;
-
- case '<': /* Lookbehinds */
- switch (*(++ptr))
- {
- case '=': /* Positive lookbehind */
- bravalue = OP_ASSERTBACK;
- ptr++;
- break;
-
- case '!': /* Negative lookbehind */
- bravalue = OP_ASSERTBACK_NOT;
- ptr++;
- break;
-
- default: /* Syntax error */
- *errorptr = ERR24;
- goto FAILED;
- }
- break;
-
- case '>': /* One-time brackets */
- bravalue = OP_ONCE;
- ptr++;
- break;
-
- case 'R': /* Pattern recursion */
- *code++ = OP_RECURSE;
- ptr++;
- continue;
-
- default: /* Option setting */
- set = unset = 0;
- optset = &set;
-
- while (*ptr != ')' && *ptr != ':')
- {
- switch (*ptr++)
- {
- case '-': optset = &unset; break;
-
- case 'i': *optset |= PCRE_CASELESS; break;
- case 'm': *optset |= PCRE_MULTILINE; break;
- case 's': *optset |= PCRE_DOTALL; break;
- case 'x': *optset |= PCRE_EXTENDED; break;
- case 'U': *optset |= PCRE_UNGREEDY; break;
- case 'X': *optset |= PCRE_EXTRA; break;
-
- default:
- *errorptr = ERR12;
- goto FAILED;
- }
- }
-
- /* Set up the changed option bits, but don't change anything yet. */
-
- newoptions = (options | set) & (~unset);
-
- /* If the options ended with ')' this is not the start of a nested
- group with option changes, so the options change at this level. At top
- level there is nothing else to be done (the options will in fact have
- been set from the start of compiling as a result of the first pass) but
- at an inner level we must compile code to change the ims options if
- necessary, and pass the new setting back so that it can be put at the
- start of any following branches, and when this group ends, a resetting
- item can be compiled. */
-
- if (*ptr == ')')
- {
- if ((options & PCRE_INGROUP) != 0 &&
- (options & PCRE_IMS) != (newoptions & PCRE_IMS))
- {
- *code++ = OP_OPT;
- *code++ = *optchanged = newoptions & PCRE_IMS;
- }
- options = newoptions; /* Change options at this level */
- previous = NULL; /* This item can't be repeated */
- continue; /* It is complete */
- }
-
- /* If the options ended with ':' we are heading into a nested group
- with possible change of options. Such groups are non-capturing and are
- not assertions of any kind. All we need to do is skip over the ':';
- the newoptions value is handled below. */
-
- bravalue = OP_BRA;
- ptr++;
- }
- }
-
- /* Else we have a referencing group; adjust the opcode. */
-
- else
- {
- if (++(*brackets) > EXTRACT_MAX)
- {
- *errorptr = ERR13;
- goto FAILED;
- }
- bravalue = OP_BRA + *brackets;
- }
-
- /* Process nested bracketed re. Assertions may not be repeated, but other
- kinds can be. We copy code into a non-register variable in order to be able
- to pass its address because some compilers complain otherwise. Pass in a
- new setting for the ims options if they have changed. */
-
- previous = (bravalue >= OP_ONCE)? code : NULL;
- *code = bravalue;
- tempcode = code;
-
- if (!compile_regex(
- options | PCRE_INGROUP, /* Set for all nested groups */
- ((options & PCRE_IMS) != (newoptions & PCRE_IMS))?
- newoptions & PCRE_IMS : -1, /* Pass ims options if changed */
- brackets, /* Bracket level */
- &tempcode, /* Where to put code (updated) */
- &ptr, /* Input pointer (updated) */
- errorptr, /* Where to put an error message */
- (bravalue == OP_ASSERTBACK ||
- bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
- condref, /* Condition reference number */
- &subreqchar, /* For possible last char */
- &subcountlits, /* For literal count */
- cd)) /* Tables block */
- goto FAILED;
-
- /* At the end of compiling, code is still pointing to the start of the
- group, while tempcode has been updated to point past the end of the group
- and any option resetting that may follow it. The pattern pointer (ptr)
- is on the bracket. */
-
- /* If this is a conditional bracket, check that there are no more than
- two branches in the group. */
-
- if (bravalue == OP_COND)
- {
- uschar *tc = code;
- condcount = 0;
-
- do {
- condcount++;
- tc += (tc[1] << 8) | tc[2];
- }
- while (*tc != OP_KET);
-
- if (condcount > 2)
- {
- *errorptr = ERR27;
- goto FAILED;
- }
- }
-
- /* Handle updating of the required character. If the subpattern didn't
- set one, leave it as it was. Otherwise, update it for normal brackets of
- all kinds, forward assertions, and conditions with two branches. Don't
- update the literal count for forward assertions, however. If the bracket
- is followed by a quantifier with zero repeat, we have to back off. Hence
- the definition of prevreqchar and subcountlits outside the main loop so
- that they can be accessed for the back off. */
-
- if (subreqchar > 0 &&
- (bravalue >= OP_BRA || bravalue == OP_ONCE || bravalue == OP_ASSERT ||
- (bravalue == OP_COND && condcount == 2)))
- {
- prevreqchar = *reqchar;
- *reqchar = subreqchar;
- if (bravalue != OP_ASSERT) *countlits += subcountlits;
- }
-
- /* Now update the main code pointer to the end of the group. */
-
- code = tempcode;
-
- /* Error if hit end of pattern */
-
- if (*ptr != ')')
- {
- *errorptr = ERR14;
- goto FAILED;
- }
- break;
-
- /* Check \ for being a real metacharacter; if not, fall through and handle
- it as a data character at the start of a string. Escape items are checked
- for validity in the pre-compiling pass. */
-
- case '\\':
- tempptr = ptr;
- c = check_escape(&ptr, errorptr, *brackets, options, FALSE, cd);
-
- /* Handle metacharacters introduced by \. For ones like \d, the ESC_ values
- are arranged to be the negation of the corresponding OP_values. For the
- back references, the values are ESC_REF plus the reference number. Only
- back references and those types that consume a character may be repeated.
- We can test for values between ESC_b and ESC_Z for the latter; this may
- have to change if any new ones are ever created. */
-
- if (c < 0)
- {
- if (-c >= ESC_REF)
- {
- previous = code;
- *code++ = OP_REF;
- *code++ = -c - ESC_REF;
- }
- else
- {
- previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
- *code++ = -c;
- }
- continue;
- }
-
- /* Data character: reset and fall through */
-
- ptr = tempptr;
- c = '\\';
-
- /* Handle a run of data characters until a metacharacter is encountered.
- The first character is guaranteed not to be whitespace or # when the
- extended flag is set. */
-
- NORMAL_CHAR:
- default:
- previous = code;
- *code = OP_CHARS;
- code += 2;
- length = 0;
-
- do
- {
- if ((options & PCRE_EXTENDED) != 0)
- {
- if ((cd->ctypes[c] & ctype_space) != 0) continue;
- if (c == '#')
- {
- /* The space before the ; is to avoid a warning on a silly compiler
- on the Macintosh. */
- while ((c = *(++ptr)) != 0 && c != '\n') ;
- if (c == 0) break;
- continue;
- }
- }
-
- /* Backslash may introduce a data char or a metacharacter. Escaped items
- are checked for validity in the pre-compiling pass. Stop the string
- before a metaitem. */
-
- if (c == '\\')
- {
- tempptr = ptr;
- c = check_escape(&ptr, errorptr, *brackets, options, FALSE, cd);
- if (c < 0) { ptr = tempptr; break; }
-
- /* If a character is > 127 in UTF-8 mode, we have to turn it into
- two or more characters in the UTF-8 encoding. */
-
-#ifdef SUPPORT_UTF8
- if (c > 127 && (options & PCRE_UTF8) != 0)
- {
- uschar buffer[8];
- int len = ord2utf8(c, buffer);
- for (c = 0; c < len; c++) *code++ = buffer[c];
- length += len;
- continue;
- }
-#endif
- }
-
- /* Ordinary character or single-char escape */
-
- *code++ = c;
- length++;
- }
-
- /* This "while" is the end of the "do" above. */
-
- while (*ptr && length < MAXLIT && (cd->ctypes[c = *(++ptr)] & ctype_meta) == 0);
-
- /* Update the last character and the count of literals */
-
- prevreqchar = (length > 1)? code[-2] : *reqchar;
- *reqchar = code[-1];
- *countlits += length;
-
- /* Compute the length and set it in the data vector, and advance to
- the next state. */
-
- previous[1] = length;
- if (length < MAXLIT) ptr--;
- break;
- }
- } /* end of big loop */
-
-/* Control never reaches here by falling through, only by a goto for all the
-error states. Pass back the position in the pattern so that it can be displayed
-to the user for diagnosing the error. */
-
-FAILED:
-*ptrptr = ptr;
-return FALSE;
-}
-
-
-
-
-/*************************************************
-* Compile sequence of alternatives *
-*************************************************/
-
-/* On entry, ptr is pointing past the bracket character, but on return
-it points to the closing bracket, or vertical bar, or end of string.
-The code variable is pointing at the byte into which the BRA operator has been
-stored. If the ims options are changed at the start (for a (?ims: group) or
-during any branch, we need to insert an OP_OPT item at the start of every
-following branch to ensure they get set correctly at run time, and also pass
-the new options into every subsequent branch compile.
-
-Argument:
- options the option bits
- optchanged new ims options to set as if (?ims) were at the start, or -1
- for no change
- brackets -> int containing the number of extracting brackets used
- codeptr -> the address of the current code pointer
- ptrptr -> the address of the current pattern pointer
- errorptr -> pointer to error message
- lookbehind TRUE if this is a lookbehind assertion
- condref >= 0 for OPT_CREF setting at start of conditional group
- reqchar -> place to put the last required character, or a negative number
- countlits -> place to put the shortest literal count of any branch
- cd points to the data block with tables pointers
-
-Returns: TRUE on success
-*/
-
-static BOOL
-compile_regex(int options, int optchanged, int *brackets, uschar **codeptr,
- const uschar **ptrptr, const char **errorptr, BOOL lookbehind, int condref,
- int *reqchar, int *countlits, compile_data *cd)
-{
-const uschar *ptr = *ptrptr;
-uschar *code = *codeptr;
-uschar *last_branch = code;
-uschar *start_bracket = code;
-uschar *reverse_count = NULL;
-int oldoptions = options & PCRE_IMS;
-int branchreqchar, branchcountlits;
-
-*reqchar = -1;
-*countlits = INT_MAX;
-code += 3;
-
-/* At the start of a reference-based conditional group, insert the reference
-number as an OP_CREF item. */
-
-if (condref >= 0)
- {
- *code++ = OP_CREF;
- *code++ = condref;
- }
-
-/* Loop for each alternative branch */
-
-for (;;)
- {
- int length;
-
- /* Handle change of options */
-
- if (optchanged >= 0)
- {
- *code++ = OP_OPT;
- *code++ = optchanged;
- options = (options & ~PCRE_IMS) | optchanged;
- }
-
- /* Set up dummy OP_REVERSE if lookbehind assertion */
-
- if (lookbehind)
- {
- *code++ = OP_REVERSE;
- reverse_count = code;
- *code++ = 0;
- *code++ = 0;
- }
-
- /* Now compile the branch */
-
- if (!compile_branch(options, brackets, &code, &ptr, errorptr, &optchanged,
- &branchreqchar, &branchcountlits, cd))
- {
- *ptrptr = ptr;
- return FALSE;
- }
-
- /* Fill in the length of the last branch */
-
- length = code - last_branch;
- last_branch[1] = length >> 8;
- last_branch[2] = length & 255;
-
- /* Save the last required character if all branches have the same; a current
- value of -1 means unset, while -2 means "previous branch had no last required
- char". */
-
- if (*reqchar != -2)
- {
- if (branchreqchar >= 0)
- {
- if (*reqchar == -1) *reqchar = branchreqchar;
- else if (*reqchar != branchreqchar) *reqchar = -2;
- }
- else *reqchar = -2;
- }
-
- /* Keep the shortest literal count */
-
- if (branchcountlits < *countlits) *countlits = branchcountlits;
- DPRINTF(("literal count = %d min=%d\n", branchcountlits, *countlits));
-
- /* If lookbehind, check that this branch matches a fixed-length string,
- and put the length into the OP_REVERSE item. Temporarily mark the end of
- the branch with OP_END. */
-
- if (lookbehind)
- {
- *code = OP_END;
- length = find_fixedlength(last_branch, options);
- DPRINTF(("fixed length = %d\n", length));
- if (length < 0)
- {
- *errorptr = ERR25;
- *ptrptr = ptr;
- return FALSE;
- }
- reverse_count[0] = (length >> 8);
- reverse_count[1] = length & 255;
- }
-
- /* Reached end of expression, either ')' or end of pattern. Insert a
- terminating ket and the length of the whole bracketed item, and return,
- leaving the pointer at the terminating char. If any of the ims options
- were changed inside the group, compile a resetting op-code following. */
-
- if (*ptr != '|')
- {
- length = code - start_bracket;
- *code++ = OP_KET;
- *code++ = length >> 8;
- *code++ = length & 255;
- if (optchanged >= 0)
- {
- *code++ = OP_OPT;
- *code++ = oldoptions;
- }
- *codeptr = code;
- *ptrptr = ptr;
- return TRUE;
- }
-
- /* Another branch follows; insert an "or" node and advance the pointer. */
-
- *code = OP_ALT;
- last_branch = code;
- code += 3;
- ptr++;
- }
-/* Control never reaches here */
-}
-
-
-
-
-/*************************************************
-* Find first significant op code *
-*************************************************/
-
-/* This is called by several functions that scan a compiled expression looking
-for a fixed first character, or an anchoring op code etc. It skips over things
-that do not influence this. For one application, a change of caseless option is
-important.
-
-Arguments:
- code pointer to the start of the group
- options pointer to external options
- optbit the option bit whose changing is significant, or
- zero if none are
- optstop TRUE to return on option change, otherwise change the options
- value and continue
-
-Returns: pointer to the first significant opcode
-*/
-
-static const uschar*
-first_significant_code(const uschar *code, int *options, int optbit,
- BOOL optstop)
-{
-for (;;)
- {
- switch ((int)*code)
- {
- case OP_OPT:
- if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))
- {
- if (optstop) return code;
- *options = (int)code[1];
- }
- code += 2;
- break;
-
- case OP_CREF:
- code += 2;
- break;
-
- case OP_WORD_BOUNDARY:
- case OP_NOT_WORD_BOUNDARY:
- code++;
- break;
-
- case OP_ASSERT_NOT:
- case OP_ASSERTBACK:
- case OP_ASSERTBACK_NOT:
- do code += (code[1] << 8) + code[2]; while (*code == OP_ALT);
- code += 3;
- break;
-
- default:
- return code;
- }
- }
-/* Control never reaches here */
-}
-
-
-
-
-/*************************************************
-* Check for anchored expression *
-*************************************************/
-
-/* Try to find out if this is an anchored regular expression. Consider each
-alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
-all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
-it's anchored. However, if this is a multiline pattern, then only OP_SOD
-counts, since OP_CIRC can match in the middle.
-
-A branch is also implicitly anchored if it starts with .* and DOTALL is set,
-because that will try the rest of the pattern at all possible matching points,
-so there is no point trying them again.
-
-Arguments:
- code points to start of expression (the bracket)
- options points to the options setting
-
-Returns: TRUE or FALSE
-*/
-
-static BOOL
-is_anchored(register const uschar *code, int *options)
-{
-do {
- const uschar *scode = first_significant_code(code + 3, options,
- PCRE_MULTILINE, FALSE);
- register int op = *scode;
- if (op >= OP_BRA || op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
- { if (!is_anchored(scode, options)) return FALSE; }
- else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR) &&
- (*options & PCRE_DOTALL) != 0)
- { if (scode[1] != OP_ANY) return FALSE; }
- else if (op != OP_SOD &&
- ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))
- return FALSE;
- code += (code[1] << 8) + code[2];
- }
-while (*code == OP_ALT);
-return TRUE;
-}
-
-
-
-/*************************************************
-* Check for starting with ^ or .* *
-*************************************************/
-
-/* This is called to find out if every branch starts with ^ or .* so that
-"first char" processing can be done to speed things up in multiline
-matching and for non-DOTALL patterns that start with .* (which must start at
-the beginning or after \n).
-
-Argument: points to start of expression (the bracket)
-Returns: TRUE or FALSE
-*/
-
-static BOOL
-is_startline(const uschar *code)
-{
-do {
- const uschar *scode = first_significant_code(code + 3, NULL, 0, FALSE);
- register int op = *scode;
- if (op >= OP_BRA || op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
- { if (!is_startline(scode)) return FALSE; }
- else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR)
- { if (scode[1] != OP_ANY) return FALSE; }
- else if (op != OP_CIRC) return FALSE;
- code += (code[1] << 8) + code[2];
- }
-while (*code == OP_ALT);
-return TRUE;
-}
-
-
-
-/*************************************************
-* Check for fixed first char *
-*************************************************/
-
-/* Try to find out if there is a fixed first character. This is called for
-unanchored expressions, as it speeds up their processing quite considerably.
-Consider each alternative branch. If they all start with the same char, or with
-a bracket all of whose alternatives start with the same char (recurse ad lib),
-then we return that char, otherwise -1.
-
-Arguments:
- code points to start of expression (the bracket)
- options pointer to the options (used to check casing changes)
-
-Returns: -1 or the fixed first char
-*/
-
-static int
-find_firstchar(const uschar *code, int *options)
-{
-register int c = -1;
-do {
- int d;
- const uschar *scode = first_significant_code(code + 3, options,
- PCRE_CASELESS, TRUE);
- register int op = *scode;
-
- if (op >= OP_BRA) op = OP_BRA;
-
- switch(op)
- {
- default:
- return -1;
-
- case OP_BRA:
- case OP_ASSERT:
- case OP_ONCE:
- case OP_COND:
- if ((d = find_firstchar(scode, options)) < 0) return -1;
- if (c < 0) c = d; else if (c != d) return -1;
- break;
-
- case OP_EXACT: /* Fall through */
- scode++;
-
- case OP_CHARS: /* Fall through */
- scode++;
-
- case OP_PLUS:
- case OP_MINPLUS:
- if (c < 0) c = scode[1]; else if (c != scode[1]) return -1;
- break;
- }
-
- code += (code[1] << 8) + code[2];
- }
-while (*code == OP_ALT);
-return c;
-}
-
-
-
-
-
-/*************************************************
-* Compile a Regular Expression *
-*************************************************/
-
-/* This function takes a string and returns a pointer to a block of store
-holding a compiled version of the expression.
-
-Arguments:
- pattern the regular expression
- options various option bits
- errorptr pointer to pointer to error text
- erroroffset ptr offset in pattern where error was detected
- tables pointer to character tables or NULL
-
-Returns: pointer to compiled data block, or NULL on error,
- with errorptr and erroroffset set
-*/
-
-pcre *
-pcre_compile(const char *pattern, int options, const char **errorptr,
- int *erroroffset, const unsigned char *tables)
-{
-real_pcre *re;
-int length = 3; /* For initial BRA plus length */
-int runlength;
-int c, reqchar, countlits;
-int bracount = 0;
-int top_backref = 0;
-int branch_extra = 0;
-int branch_newextra;
-unsigned int brastackptr = 0;
-size_t size;
-uschar *code;
-const uschar *ptr;
-compile_data compile_block;
-int brastack[BRASTACK_SIZE];
-uschar bralenstack[BRASTACK_SIZE];
-const size_t pattern_length = strlen(pattern);
-
-#ifdef DEBUG
-uschar *code_base, *code_end;
-#endif
-
-/* Can't support UTF8 unless PCRE has been compiled to include the code. */
-
-#ifndef SUPPORT_UTF8
-if ((options & PCRE_UTF8) != 0)
- {
- *errorptr = ERR32;
- return NULL;
- }
-#endif
-
-/* We can't pass back an error message if errorptr is NULL; I guess the best we
-can do is just return NULL. */
-
-if (errorptr == NULL) return NULL;
-*errorptr = NULL;
-
-/* However, we can give a message for this error */
-
-if (erroroffset == NULL)
- {
- *errorptr = ERR16;
- return NULL;
- }
-*erroroffset = 0;
-
-if ((options & ~PUBLIC_OPTIONS) != 0)
- {
- *errorptr = ERR17;
- return NULL;
- }
-
-/* Set up pointers to the individual character tables */
-
-if (tables == NULL) tables = pcre_default_tables;
-compile_block.lcc = tables + lcc_offset;
-compile_block.fcc = tables + fcc_offset;
-compile_block.cbits = tables + cbits_offset;
-compile_block.ctypes = tables + ctypes_offset;
-
-/* Reflect pattern for debugging output */
-
-DPRINTF(("------------------------------------------------------------------\n"));
-DPRINTF(("%s\n", pattern));
-
-/* The first thing to do is to make a pass over the pattern to compute the
-amount of store required to hold the compiled code. This does not have to be
-perfect as long as errors are overestimates. At the same time we can detect any
-internal flag settings. Make an attempt to correct for any counted white space
-if an "extended" flag setting appears late in the pattern. We can't be so
-clever for #-comments. */
-
-ptr = (const uschar *)(pattern - 1);
-while ((c = *(++ptr)) != 0)
- {
- int min, max;
- int class_charcount;
-
- if ((options & PCRE_EXTENDED) != 0)
- {
- if ((compile_block.ctypes[c] & ctype_space) != 0) continue;
- if (c == '#')
- {
- /* The space before the ; is to avoid a warning on a silly compiler
- on the Macintosh. */
- while ((c = *(++ptr)) != 0 && c != '\n') ;
- continue;
- }
- }
-
- switch(c)
- {
- /* A backslashed item may be an escaped "normal" character or a
- character type. For a "normal" character, put the pointers and
- character back so that tests for whitespace etc. in the input
- are done correctly. */
-
- case '\\':
- {
- const uschar *save_ptr = ptr;
- c = check_escape(&ptr, errorptr, bracount, options, FALSE, &compile_block);
- if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
- if (c >= 0)
- {
- ptr = save_ptr;
- c = '\\';
- goto NORMAL_CHAR;
- }
- }
- length++;
-
- /* A back reference needs an additional char, plus either one or 5
- bytes for a repeat. We also need to keep the value of the highest
- back reference. */
-
- if (c <= -ESC_REF)
- {
- int refnum = -c - ESC_REF;
- if (refnum > top_backref) top_backref = refnum;
- length++; /* For single back reference */
- if (ptr[1] == '{' && is_counted_repeat(ptr+2, &compile_block))
- {
- ptr = read_repeat_counts(ptr+2, &min, &max, errorptr, &compile_block);
- if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
- if ((min == 0 && (max == 1 || max == -1)) ||
- (min == 1 && max == -1))
- length++;
- else length += 5;
- if (ptr[1] == '?') ptr++;
- }
- }
- continue;
-
- case '^':
- case '.':
- case '$':
- case '*': /* These repeats won't be after brackets; */
- case '+': /* those are handled separately */
- case '?':
- length++;
- continue;
-
- /* This covers the cases of repeats after a single char, metachar, class,
- or back reference. */
-
- case '{':
- if (!is_counted_repeat(ptr+1, &compile_block)) goto NORMAL_CHAR;
- ptr = read_repeat_counts(ptr+1, &min, &max, errorptr, &compile_block);
- if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
- if ((min == 0 && (max == 1 || max == -1)) ||
- (min == 1 && max == -1))
- length++;
- else
- {
- length--; /* Uncount the original char or metachar */
- if (min == 1) length++; else if (min > 0) length += 4;
- if (max > 0) length += 4; else length += 2;
- }
- if (ptr[1] == '?') ptr++;
- continue;
-
- /* An alternation contains an offset to the next branch or ket. If any ims
- options changed in the previous branch(es), and/or if we are in a
- lookbehind assertion, extra space will be needed at the start of the
- branch. This is handled by branch_extra. */
-
- case '|':
- length += 3 + branch_extra;
- continue;
-
- /* A character class uses 33 characters. Don't worry about character types
- that aren't allowed in classes - they'll get picked up during the compile.
- A character class that contains only one character uses 2 or 3 bytes,
- depending on whether it is negated or not. Notice this where we can. */
-
- case '[':
- class_charcount = 0;
- if (*(++ptr) == '^') ptr++;
- do
- {
- if (*ptr == '\\')
- {
- int ch = check_escape(&ptr, errorptr, bracount, options, TRUE,
- &compile_block);
- if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
- if (-ch == ESC_b) class_charcount++; else class_charcount = 10;
- }
- else class_charcount++;
- ptr++;
- if (*ptr == 0)
- {
- *errorptr = ERR6;
- goto PCRE_ERROR_RETURN;
- }
- }
- while (*ptr != ']');
-
- /* Repeats for negated single chars are handled by the general code */
-
- if (class_charcount == 1) length += 3; else
- {
- length += 33;
-
- /* A repeat needs either 1 or 5 bytes. */
-
- if (*ptr != 0 && ptr[1] == '{' && is_counted_repeat(ptr+2, &compile_block))
- {
- ptr = read_repeat_counts(ptr+2, &min, &max, errorptr, &compile_block);
- if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
- if ((min == 0 && (max == 1 || max == -1)) ||
- (min == 1 && max == -1))
- length++;
- else length += 5;
- if (ptr[1] == '?') ptr++;
- }
- }
- continue;
-
- /* Brackets may be genuine groups or special things */
-
- case '(':
- branch_newextra = 0;
-
- /* Handle special forms of bracket, which all start (? */
-
- if (ptr[1] == '?')
- {
- int set, unset;
- int *optset;
-
- switch (c = ptr[2])
- {
- /* Skip over comments entirely */
- case '#':
- ptr += 3;
- while (*ptr != 0 && *ptr != ')') ptr++;
- if (*ptr == 0)
- {
- *errorptr = ERR18;
- goto PCRE_ERROR_RETURN;
- }
- continue;
-
- /* Non-referencing groups and lookaheads just move the pointer on, and
- then behave like a non-special bracket, except that they don't increment
- the count of extracting brackets. Ditto for the "once only" bracket,
- which is in Perl from version 5.005. */
-
- case ':':
- case '=':
- case '!':
- case '>':
- ptr += 2;
- break;
-
- /* A recursive call to the regex is an extension, to provide the
- facility which can be obtained by $(?p{perl-code}) in Perl 5.6. */
-
- case 'R':
- if (ptr[3] != ')')
- {
- *errorptr = ERR29;
- goto PCRE_ERROR_RETURN;
- }
- ptr += 3;
- length += 1;
- break;
-
- /* Lookbehinds are in Perl from version 5.005 */
-
- case '<':
- if (ptr[3] == '=' || ptr[3] == '!')
- {
- ptr += 3;
- branch_newextra = 3;
- length += 3; /* For the first branch */
- break;
- }
- *errorptr = ERR24;
- goto PCRE_ERROR_RETURN;
-
- /* Conditionals are in Perl from version 5.005. The bracket must either
- be followed by a number (for bracket reference) or by an assertion
- group. */
-
- case '(':
- if ((compile_block.ctypes[ptr[3]] & ctype_digit) != 0)
- {
- ptr += 4;
- length += 2;
- while ((compile_block.ctypes[*ptr] & ctype_digit) != 0) ptr++;
- if (*ptr != ')')
- {
- *errorptr = ERR26;
- goto PCRE_ERROR_RETURN;
- }
- }
- else /* An assertion must follow */
- {
- ptr++; /* Can treat like ':' as far as spacing is concerned */
- if (ptr[2] != '?' ||
- (ptr[3] != '=' && ptr[3] != '!' && ptr[3] != '<') )
- {
- ptr += 2; /* To get right offset in message */
- *errorptr = ERR28;
- goto PCRE_ERROR_RETURN;
- }
- }
- break;
-
- /* Else loop checking valid options until ) is met. Anything else is an
- error. If we are without any brackets, i.e. at top level, the settings
- act as if specified in the options, so massage the options immediately.
- This is for backward compatibility with Perl 5.004. */
-
- default:
- set = unset = 0;
- optset = &set;
- ptr += 2;
-
- for (;; ptr++)
- {
- c = *ptr;
- switch (c)
- {
- case 'i':
- *optset |= PCRE_CASELESS;
- continue;
-
- case 'm':
- *optset |= PCRE_MULTILINE;
- continue;
-
- case 's':
- *optset |= PCRE_DOTALL;
- continue;
-
- case 'x':
- *optset |= PCRE_EXTENDED;
- continue;
-
- case 'X':
- *optset |= PCRE_EXTRA;
- continue;
-
- case 'U':
- *optset |= PCRE_UNGREEDY;
- continue;
-
- case '-':
- optset = &unset;
- continue;
-
- /* A termination by ')' indicates an options-setting-only item;
- this is global at top level; otherwise nothing is done here and
- it is handled during the compiling process on a per-bracket-group
- basis. */
-
- case ')':
- if (brastackptr == 0)
- {
- options = (options | set) & (~unset);
- set = unset = 0; /* To save length */
- }
- /* Fall through */
-
- /* A termination by ':' indicates the start of a nested group with
- the given options set. This is again handled at compile time, but
- we must allow for compiled space if any of the ims options are
- set. We also have to allow for resetting space at the end of
- the group, which is why 4 is added to the length and not just 2.
- If there are several changes of options within the same group, this
- will lead to an over-estimate on the length, but this shouldn't
- matter very much. We also have to allow for resetting options at
- the start of any alternations, which we do by setting
- branch_newextra to 2. Finally, we record whether the case-dependent
- flag ever changes within the regex. This is used by the "required
- character" code. */
-
- case ':':
- if (((set|unset) & PCRE_IMS) != 0)
- {
- length += 4;
- branch_newextra = 2;
- if (((set|unset) & PCRE_CASELESS) != 0) options |= PCRE_ICHANGED;
- }
- goto END_OPTIONS;
-
- /* Unrecognized option character */
-
- default:
- *errorptr = ERR12;
- goto PCRE_ERROR_RETURN;
- }
- }
-
- /* If we hit a closing bracket, that's it - this is a freestanding
- option-setting. We need to ensure that branch_extra is updated if
- necessary. The only values branch_newextra can have here are 0 or 2.
- If the value is 2, then branch_extra must either be 2 or 5, depending
- on whether this is a lookbehind group or not. */
-
- END_OPTIONS:
- if (c == ')')
- {
- if (branch_newextra == 2 && (branch_extra == 0 || branch_extra == 3))
- branch_extra += branch_newextra;
- continue;
- }
-
- /* If options were terminated by ':' control comes here. Fall through
- to handle the group below. */
- }
- }
-
- /* Extracting brackets must be counted so we can process escapes in a
- Perlish way. */
-
- else bracount++;
-
- /* Non-special forms of bracket. Save length for computing whole length
- at end if there's a repeat that requires duplication of the group. Also
- save the current value of branch_extra, and start the new group with
- the new value. If non-zero, this will either be 2 for a (?imsx: group, or 3
- for a lookbehind assertion. */
-
- if (brastackptr >= sizeof(brastack)/sizeof(int))
- {
- *errorptr = ERR19;
- goto PCRE_ERROR_RETURN;
- }
-
- bralenstack[brastackptr] = branch_extra;
- branch_extra = branch_newextra;
-
- brastack[brastackptr++] = length;
- length += 3;
- continue;
-
- /* Handle ket. Look for subsequent max/min; for certain sets of values we
- have to replicate this bracket up to that many times. If brastackptr is
- 0 this is an unmatched bracket which will generate an error, but take care
- not to try to access brastack[-1] when computing the length and restoring
- the branch_extra value. */
-
- case ')':
- length += 3;
- {
- int minval = 1;
- int maxval = 1;
- int duplength;
-
- if (brastackptr > 0)
- {
- duplength = length - brastack[--brastackptr];
- branch_extra = bralenstack[brastackptr];
- }
- else duplength = 0;
-
- /* Leave ptr at the final char; for read_repeat_counts this happens
- automatically; for the others we need an increment. */
-
- if ((c = ptr[1]) == '{' && is_counted_repeat(ptr+2, &compile_block))
- {
- ptr = read_repeat_counts(ptr+2, &minval, &maxval, errorptr,
- &compile_block);
- if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
- }
- else if (c == '*') { minval = 0; maxval = -1; ptr++; }
- else if (c == '+') { maxval = -1; ptr++; }
- else if (c == '?') { minval = 0; ptr++; }
-
- /* If the minimum is zero, we have to allow for an OP_BRAZERO before the
- group, and if the maximum is greater than zero, we have to replicate
- maxval-1 times; each replication acquires an OP_BRAZERO plus a nesting
- bracket set - hence the 7. */
-
- if (minval == 0)
- {
- length++;
- if (maxval > 0) length += (maxval - 1) * (duplength + 7);
- }
-
- /* When the minimum is greater than zero, 1 we have to replicate up to
- minval-1 times, with no additions required in the copies. Then, if
- there is a limited maximum we have to replicate up to maxval-1 times
- allowing for a BRAZERO item before each optional copy and nesting
- brackets for all but one of the optional copies. */
-
- else
- {
- length += (minval - 1) * duplength;
- if (maxval > minval) /* Need this test as maxval=-1 means no limit */
- length += (maxval - minval) * (duplength + 7) - 6;
- }
- }
- continue;
-
- /* Non-special character. For a run of such characters the length required
- is the number of characters + 2, except that the maximum run length is 255.
- We won't get a skipped space or a non-data escape or the start of a #
- comment as the first character, so the length can't be zero. */
-
- NORMAL_CHAR:
- default:
- length += 2;
- runlength = 0;
- do
- {
- if ((options & PCRE_EXTENDED) != 0)
- {
- if ((compile_block.ctypes[c] & ctype_space) != 0) continue;
- if (c == '#')
- {
- /* The space before the ; is to avoid a warning on a silly compiler
- on the Macintosh. */
- while ((c = *(++ptr)) != 0 && c != '\n') ;
- continue;
- }
- }
-
- /* Backslash may introduce a data char or a metacharacter; stop the
- string before the latter. */
-
- if (c == '\\')
- {
- const uschar *saveptr = ptr;
- c = check_escape(&ptr, errorptr, bracount, options, FALSE,
- &compile_block);
- if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
- if (c < 0) { ptr = saveptr; break; }
-
-#ifdef SUPPORT_UTF8
- if (c > 127 && (options & PCRE_UTF8) != 0)
- {
- int i;
- for (i = 0; i < sizeof(utf8_table1)/sizeof(int); i++)
- if (c <= utf8_table1[i]) break;
- runlength += i;
- }
-#endif
- }
-
- /* Ordinary character or single-char escape */
-
- runlength++;
-
- if ((const char *)ptr > pattern + pattern_length)
- {
- *errorptr = "internal error";
- goto PCRE_ERROR_RETURN;
- }
- }
-
- /* This "while" is the end of the "do" above. */
-
- while (runlength < MAXLIT &&
- (compile_block.ctypes[c = *(++ptr)] & ctype_meta) == 0);
-
- ptr--;
- length += runlength;
- continue;
- }
- }
-
-length += 4; /* For final KET and END */
-
-if (length > 65539)
- {
- *errorptr = ERR20;
- return NULL;
- }
-
-/* Compute the size of data block needed and get it, either from malloc or
-externally provided function. We specify "code[0]" in the offsetof() expression
-rather than just "code", because it has been reported that one broken compiler
-fails on "code" because it is also an independent variable. It should make no
-difference to the value of the offsetof(). */
-
-size = length + offsetof(real_pcre, code[0]);
-re = (real_pcre *)(pcre_malloc)(size);
-
-if (re == NULL)
- {
- *errorptr = ERR21;
- return NULL;
- }
-
-/* Put in the magic number, and save the size, options, and table pointer */
-
-re->magic_number = MAGIC_NUMBER;
-re->size = size;
-re->options = options;
-re->tables = tables;
-
-/* Set up a starting, non-extracting bracket, then compile the expression. On
-error, *errorptr will be set non-NULL, so we don't need to look at the result
-of the function here. */
-
-ptr = (const uschar *)pattern;
-code = re->code;
-*code = OP_BRA;
-bracount = 0;
-(void)compile_regex(options, -1, &bracount, &code, &ptr, errorptr, FALSE, -1,
- &reqchar, &countlits, &compile_block);
-re->top_bracket = bracount;
-re->top_backref = top_backref;
-
-/* If not reached end of pattern on success, there's an excess bracket. */
-
-if (*errorptr == NULL && *ptr != 0) *errorptr = ERR22;
-
-/* Fill in the terminating state and check for disastrous overflow, but
-if debugging, leave the test till after things are printed out. */
-
-*code++ = OP_END;
-
-#ifndef DEBUG
-if (code - re->code > length) *errorptr = ERR23;
-#endif
-
-/* Give an error if there's back reference to a non-existent capturing
-subpattern. */
-
-if (top_backref > re->top_bracket) *errorptr = ERR15;
-
-/* Failed to compile */
-
-if (*errorptr != NULL)
- {
- (pcre_free)(re);
- PCRE_ERROR_RETURN:
- *erroroffset = ptr - (const uschar *)pattern;
- return NULL;
- }
-
-/* If the anchored option was not passed, set flag if we can determine that the
-pattern is anchored by virtue of ^ characters or \A or anything else (such as
-starting with .* when DOTALL is set).
-
-Otherwise, see if we can determine what the first character has to be, because
-that speeds up unanchored matches no end. If not, see if we can set the
-PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
-start with ^. and also when all branches start with .* for non-DOTALL matches.
-*/
-
-if ((options & PCRE_ANCHORED) == 0)
- {
- int temp_options = options;
- if (is_anchored(re->code, &temp_options))
- re->options |= PCRE_ANCHORED;
- else
- {
- int ch = find_firstchar(re->code, &temp_options);
- if (ch >= 0)
- {
- re->first_char = ch;
- re->options |= PCRE_FIRSTSET;
- }
- else if (is_startline(re->code))
- re->options |= PCRE_STARTLINE;
- }
- }
-
-/* Save the last required character if there are at least two literal
-characters on all paths, or if there is no first character setting. */
-
-if (reqchar >= 0 && (countlits > 1 || (re->options & PCRE_FIRSTSET) == 0))
- {
- re->req_char = reqchar;
- re->options |= PCRE_REQCHSET;
- }
-
-/* Print out the compiled data for debugging */
-
-#ifdef DEBUG
-
-printf("Length = %d top_bracket = %d top_backref = %d\n",
- length, re->top_bracket, re->top_backref);
-
-if (re->options != 0)
- {
- printf("%s%s%s%s%s%s%s%s%s\n",
- ((re->options & PCRE_ANCHORED) != 0)? "anchored " : "",
- ((re->options & PCRE_CASELESS) != 0)? "caseless " : "",
- ((re->options & PCRE_ICHANGED) != 0)? "case state changed " : "",
- ((re->options & PCRE_EXTENDED) != 0)? "extended " : "",
- ((re->options & PCRE_MULTILINE) != 0)? "multiline " : "",
- ((re->options & PCRE_DOTALL) != 0)? "dotall " : "",
- ((re->options & PCRE_DOLLAR_ENDONLY) != 0)? "endonly " : "",
- ((re->options & PCRE_EXTRA) != 0)? "extra " : "",
- ((re->options & PCRE_UNGREEDY) != 0)? "ungreedy " : "");
- }
-
-if ((re->options & PCRE_FIRSTSET) != 0)
- {
- if (isprint(re->first_char)) printf("First char = %c\n", re->first_char);
- else printf("First char = \\x%02x\n", re->first_char);
- }
-
-if ((re->options & PCRE_REQCHSET) != 0)
- {
- if (isprint(re->req_char)) printf("Req char = %c\n", re->req_char);
- else printf("Req char = \\x%02x\n", re->req_char);
- }
-
-code_end = code;
-code_base = code = re->code;
-
-while (code < code_end)
- {
- int charlength;
-
- printf("%3d ", code - code_base);
-
- if (*code >= OP_BRA)
- {
- printf("%3d Bra %d", (code[1] << 8) + code[2], *code - OP_BRA);
- code += 2;
- }
-
- else switch(*code)
- {
- case OP_OPT:
- printf(" %.2x %s", code[1], OP_names[*code]);
- code++;
- break;
-
- case OP_COND:
- printf("%3d Cond", (code[1] << 8) + code[2]);
- code += 2;
- break;
-
- case OP_CREF:
- printf(" %.2d %s", code[1], OP_names[*code]);
- code++;
- break;
-
- case OP_CHARS:
- charlength = *(++code);
- printf("%3d ", charlength);
- while (charlength-- > 0)
- if (isprint(c = *(++code))) printf("%c", c); else printf("\\x%02x", c);
- break;
-
- case OP_KETRMAX:
- case OP_KETRMIN:
- case OP_ALT:
- case OP_KET:
- case OP_ASSERT:
- case OP_ASSERT_NOT:
- case OP_ASSERTBACK:
- case OP_ASSERTBACK_NOT:
- case OP_ONCE:
- printf("%3d %s", (code[1] << 8) + code[2], OP_names[*code]);
- code += 2;
- break;
-
- case OP_REVERSE:
- printf("%3d %s", (code[1] << 8) + code[2], OP_names[*code]);
- code += 2;
- break;
-
- case OP_STAR:
- case OP_MINSTAR:
- case OP_PLUS:
- case OP_MINPLUS:
- case OP_QUERY:
- case OP_MINQUERY:
- case OP_TYPESTAR:
- case OP_TYPEMINSTAR:
- case OP_TYPEPLUS:
- case OP_TYPEMINPLUS:
- case OP_TYPEQUERY:
- case OP_TYPEMINQUERY:
- if (*code >= OP_TYPESTAR)
- printf(" %s", OP_names[code[1]]);
- else if (isprint(c = code[1])) printf(" %c", c);
- else printf(" \\x%02x", c);
- printf("%s", OP_names[*code++]);
- break;
-
- case OP_EXACT:
- case OP_UPTO:
- case OP_MINUPTO:
- if (isprint(c = code[3])) printf(" %c{", c);
- else printf(" \\x%02x{", c);
- if (*code != OP_EXACT) printf("0,");
- printf("%d}", (code[1] << 8) + code[2]);
- if (*code == OP_MINUPTO) printf("?");
- code += 3;
- break;
-
- case OP_TYPEEXACT:
- case OP_TYPEUPTO:
- case OP_TYPEMINUPTO:
- printf(" %s{", OP_names[code[3]]);
- if (*code != OP_TYPEEXACT) printf(",");
- printf("%d}", (code[1] << 8) + code[2]);
- if (*code == OP_TYPEMINUPTO) printf("?");
- code += 3;
- break;
-
- case OP_NOT:
- if (isprint(c = *(++code))) printf(" [^%c]", c);
- else printf(" [^\\x%02x]", c);
- break;
-
- case OP_NOTSTAR:
- case OP_NOTMINSTAR:
- case OP_NOTPLUS:
- case OP_NOTMINPLUS:
- case OP_NOTQUERY:
- case OP_NOTMINQUERY:
- if (isprint(c = code[1])) printf(" [^%c]", c);
- else printf(" [^\\x%02x]", c);
- printf("%s", OP_names[*code++]);
- break;
-
- case OP_NOTEXACT:
- case OP_NOTUPTO:
- case OP_NOTMINUPTO:
- if (isprint(c = code[3])) printf(" [^%c]{", c);
- else printf(" [^\\x%02x]{", c);
- if (*code != OP_NOTEXACT) printf(",");
- printf("%d}", (code[1] << 8) + code[2]);
- if (*code == OP_NOTMINUPTO) printf("?");
- code += 3;
- break;
-
- case OP_REF:
- printf(" \\%d", *(++code));
- code ++;
- goto CLASS_REF_REPEAT;
-
- case OP_CLASS:
- {
- int i, min, max;
- code++;
- printf(" [");
-
- for (i = 0; i < 256; i++)
- {
- if ((code[i/8] & (1 << (i&7))) != 0)
- {
- int j;
- for (j = i+1; j < 256; j++)
- if ((code[j/8] & (1 << (j&7))) == 0) break;
- if (i == '-' || i == ']') printf("\\");
- if (isprint(i)) printf("%c", i); else printf("\\x%02x", i);
- if (--j > i)
- {
- printf("-");
- if (j == '-' || j == ']') printf("\\");
- if (isprint(j)) printf("%c", j); else printf("\\x%02x", j);
- }
- i = j;
- }
- }
- printf("]");
- code += 32;
-
- CLASS_REF_REPEAT:
-
- switch(*code)
- {
- case OP_CRSTAR:
- case OP_CRMINSTAR:
- case OP_CRPLUS:
- case OP_CRMINPLUS:
- case OP_CRQUERY:
- case OP_CRMINQUERY:
- printf("%s", OP_names[*code]);
- break;
-
- case OP_CRRANGE:
- case OP_CRMINRANGE:
- min = (code[1] << 8) + code[2];
- max = (code[3] << 8) + code[4];
- if (max == 0) printf("{%d,}", min);
- else printf("{%d,%d}", min, max);
- if (*code == OP_CRMINRANGE) printf("?");
- code += 4;
- break;
-
- default:
- code--;
- }
- }
- break;
-
- /* Anything else is just a one-node item */
-
- default:
- printf(" %s", OP_names[*code]);
- break;
- }
-
- code++;
- printf("\n");
- }
-printf("------------------------------------------------------------------\n");
-
-/* This check is done here in the debugging case so that the code that
-was compiled can be seen. */
-
-if (code - re->code > length)
- {
- *errorptr = ERR23;
- (pcre_free)(re);
- *erroroffset = ptr - (uschar *)pattern;
- return NULL;
- }
-#endif
-
-return (pcre *)re;
-}
-
-
-
-/*************************************************
-* Match a back-reference *
-*************************************************/
-
-/* If a back reference hasn't been set, the length that is passed is greater
-than the number of characters left in the string, so the match fails.
-
-Arguments:
- offset index into the offset vector
- eptr points into the subject
- length length to be matched
- md points to match data block
- ims the ims flags
-
-Returns: TRUE if matched
-*/
-
-static BOOL
-match_ref(int offset, register const uschar *eptr, int length, match_data *md,
- unsigned long int ims)
-{
-const uschar *p = md->start_subject + md->offset_vector[offset];
-
-#ifdef DEBUG
-if (eptr >= md->end_subject)
- printf("matching subject ");
-else
- {
- printf("matching subject ");
- pchars(eptr, length, TRUE, md);
- }
-printf(" against backref ");
-pchars(p, length, FALSE, md);
-printf("\n");
-#endif
-
-/* Always fail if not enough characters left */
-
-if (length > md->end_subject - eptr) return FALSE;
-
-/* Separate the caselesss case for speed */
-
-if ((ims & PCRE_CASELESS) != 0)
- {
- while (length-- > 0)
- if (md->lcc[*p++] != md->lcc[*eptr++]) return FALSE;
- }
-else
- { while (length-- > 0) if (*p++ != *eptr++) return FALSE; }
-
-return TRUE;
-}
-
-
-
-/*************************************************
-* Match from current position *
-*************************************************/
-
-/* On entry ecode points to the first opcode, and eptr to the first character
-in the subject string, while eptrb holds the value of eptr at the start of the
-last bracketed group - used for breaking infinite loops matching zero-length
-strings.
-
-Arguments:
- eptr pointer in subject
- ecode position in code
- offset_top current top pointer
- md pointer to "static" info for the match
- ims current /i, /m, and /s options
- eptrb pointer to chain of blocks containing eptr at start of
- brackets - for testing for empty matches
- flags can contain
- match_condassert - this is an assertion condition
- match_isgroup - this is the start of a bracketed group
-
-Returns: TRUE if matched
-*/
-
-static BOOL
-match(register const uschar *eptr, register const uschar *ecode,
- int offset_top, match_data *md, unsigned long int ims, eptrblock *eptrb,
- int flags)
-{
-unsigned long int original_ims = ims; /* Save for resetting on ')' */
-eptrblock newptrb;
-
-/* At the start of a bracketed group, add the current subject pointer to the
-stack of such pointers, to be re-instated at the end of the group when we hit
-the closing ket. When match() is called in other circumstances, we don't add to
-the stack. */
-
-if ((flags & match_isgroup) != 0)
- {
- newptrb.prev = eptrb;
- newptrb.saved_eptr = eptr;
- eptrb = &newptrb;
- }
-
-/* Now start processing the operations. */
-
-for (;;)
- {
- int op = (int)*ecode;
- int min, max, ctype;
- register int i;
- register int c;
- BOOL minimize = FALSE;
-
- /* Opening capturing bracket. If there is space in the offset vector, save
- the current subject position in the working slot at the top of the vector. We
- mustn't change the current values of the data slot, because they may be set
- from a previous iteration of this group, and be referred to by a reference
- inside the group.
-
- If the bracket fails to match, we need to restore this value and also the
- values of the final offsets, in case they were set by a previous iteration of
- the same bracket.
-
- If there isn't enough space in the offset vector, treat this as if it were a
- non-capturing bracket. Don't worry about setting the flag for the error case
- here; that is handled in the code for KET. */
-
- if (op > OP_BRA)
- {
- int number = op - OP_BRA;
- int offset = number << 1;
-
-#ifdef DEBUG
- printf("start bracket %d subject=", number);
- pchars(eptr, 16, TRUE, md);
- printf("\n");
-#endif
-
- if (offset < md->offset_max)
- {
- int save_offset1 = md->offset_vector[offset];
- int save_offset2 = md->offset_vector[offset+1];
- int save_offset3 = md->offset_vector[md->offset_end - number];
-
- DPRINTF(("saving %d %d %d\n", save_offset1, save_offset2, save_offset3));
- md->offset_vector[md->offset_end - number] = eptr - md->start_subject;
-
- do
- {
- if (match(eptr, ecode+3, offset_top, md, ims, eptrb, match_isgroup))
- return TRUE;
- ecode += (ecode[1] << 8) + ecode[2];
- }
- while (*ecode == OP_ALT);
-
- DPRINTF(("bracket %d failed\n", number));
-
- md->offset_vector[offset] = save_offset1;
- md->offset_vector[offset+1] = save_offset2;
- md->offset_vector[md->offset_end - number] = save_offset3;
- return FALSE;
- }
-
- /* Insufficient room for saving captured contents */
-
- else op = OP_BRA;
- }
-
- /* Other types of node can be handled by a switch */
-
- switch(op)
- {
- case OP_BRA: /* Non-capturing bracket: optimized */
- DPRINTF(("start bracket 0\n"));
- do
- {
- if (match(eptr, ecode+3, offset_top, md, ims, eptrb, match_isgroup))
- return TRUE;
- ecode += (ecode[1] << 8) + ecode[2];
- }
- while (*ecode == OP_ALT);
- DPRINTF(("bracket 0 failed\n"));
- return FALSE;
-
- /* Conditional group: compilation checked that there are no more than
- two branches. If the condition is false, skipping the first branch takes us
- past the end if there is only one branch, but that's OK because that is
- exactly what going to the ket would do. */
-
- case OP_COND:
- if (ecode[3] == OP_CREF) /* Condition is extraction test */
- {
- int offset = ecode[4] << 1; /* Doubled reference number */
- return match(eptr,
- ecode + ((offset < offset_top && md->offset_vector[offset] >= 0)?
- 5 : 3 + (ecode[1] << 8) + ecode[2]),
- offset_top, md, ims, eptrb, match_isgroup);
- }
-
- /* The condition is an assertion. Call match() to evaluate it - setting
- the final argument TRUE causes it to stop at the end of an assertion. */
-
- else
- {
- if (match(eptr, ecode+3, offset_top, md, ims, NULL,
- match_condassert | match_isgroup))
- {
- ecode += 3 + (ecode[4] << 8) + ecode[5];
- while (*ecode == OP_ALT) ecode += (ecode[1] << 8) + ecode[2];
- }
- else ecode += (ecode[1] << 8) + ecode[2];
- return match(eptr, ecode+3, offset_top, md, ims, eptrb, match_isgroup);
- }
- /* Control never reaches here */
-
- /* Skip over conditional reference data if encountered (should not be) */
-
- case OP_CREF:
- ecode += 2;
- break;
-
- /* End of the pattern. If PCRE_NOTEMPTY is set, fail if we have matched
- an empty string - recursion will then try other alternatives, if any. */
-
- case OP_END:
- if (md->notempty && eptr == md->start_match) return FALSE;
- md->end_match_ptr = eptr; /* Record where we ended */
- md->end_offset_top = offset_top; /* and how many extracts were taken */
- return TRUE;
-
- /* Change option settings */
-
- case OP_OPT:
- ims = ecode[1];
- ecode += 2;
- DPRINTF(("ims set to %02lx\n", ims));
- break;
-
- /* Assertion brackets. Check the alternative branches in turn - the
- matching won't pass the KET for an assertion. If any one branch matches,
- the assertion is true. Lookbehind assertions have an OP_REVERSE item at the
- start of each branch to move the current point backwards, so the code at
- this level is identical to the lookahead case. */
-
- case OP_ASSERT:
- case OP_ASSERTBACK:
- do
- {
- if (match(eptr, ecode+3, offset_top, md, ims, NULL, match_isgroup)) break;
- ecode += (ecode[1] << 8) + ecode[2];
- }
- while (*ecode == OP_ALT);
- if (*ecode == OP_KET) return FALSE;
-
- /* If checking an assertion for a condition, return TRUE. */
-
- if ((flags & match_condassert) != 0) return TRUE;
-
- /* Continue from after the assertion, updating the offsets high water
- mark, since extracts may have been taken during the assertion. */
-
- do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT);
- ecode += 3;
- offset_top = md->end_offset_top;
- continue;
-
- /* Negative assertion: all branches must fail to match */
-
- case OP_ASSERT_NOT:
- case OP_ASSERTBACK_NOT:
- do
- {
- if (match(eptr, ecode+3, offset_top, md, ims, NULL, match_isgroup))
- return FALSE;
- ecode += (ecode[1] << 8) + ecode[2];
- }
- while (*ecode == OP_ALT);
-
- if ((flags & match_condassert) != 0) return TRUE;
-
- ecode += 3;
- continue;
-
- /* Move the subject pointer back. This occurs only at the start of
- each branch of a lookbehind assertion. If we are too close to the start to
- move back, this match function fails. When working with UTF-8 we move
- back a number of characters, not bytes. */
-
- case OP_REVERSE:
-#ifdef SUPPORT_UTF8
- c = (ecode[1] << 8) + ecode[2];
- for (i = 0; i < c; i++)
- {
- eptr--;
- BACKCHAR(eptr)
- }
-#else
- eptr -= (ecode[1] << 8) + ecode[2];
-#endif
-
- if (eptr < md->start_subject) return FALSE;
- ecode += 3;
- break;
-
- /* Recursion matches the current regex, nested. If there are any capturing
- brackets started but not finished, we have to save their starting points
- and reinstate them after the recursion. However, we don't know how many
- such there are (offset_top records the completed total) so we just have
- to save all the potential data. There may be up to 99 such values, which
- is a bit large to put on the stack, but using malloc for small numbers
- seems expensive. As a compromise, the stack is used when there are fewer
- than 16 values to store; otherwise malloc is used. A problem is what to do
- if the malloc fails ... there is no way of returning to the top level with
- an error. Save the top 15 values on the stack, and accept that the rest
- may be wrong. */
-
- case OP_RECURSE:
- {
- BOOL rc;
- int *save;
- int stacksave[15];
-
- c = md->offset_max;
-
- if (c < 16) save = stacksave; else
- {
- save = (int *)(pcre_malloc)((c+1) * sizeof(int));
- if (save == NULL)
- {
- save = stacksave;
- c = 15;
- }
- }
-
- for (i = 1; i <= c; i++)
- save[i] = md->offset_vector[md->offset_end - i];
- rc = match(eptr, md->start_pattern, offset_top, md, ims, eptrb,
- match_isgroup);
- for (i = 1; i <= c; i++)
- md->offset_vector[md->offset_end - i] = save[i];
- if (save != stacksave) (pcre_free)(save);
- if (!rc) return FALSE;
-
- /* In case the recursion has set more capturing values, save the final
- number, then move along the subject till after the recursive match,
- and advance one byte in the pattern code. */
-
- offset_top = md->end_offset_top;
- eptr = md->end_match_ptr;
- ecode++;
- }
- break;
-
- /* "Once" brackets are like assertion brackets except that after a match,
- the point in the subject string is not moved back. Thus there can never be
- a move back into the brackets. Check the alternative branches in turn - the
- matching won't pass the KET for this kind of subpattern. If any one branch
- matches, we carry on as at the end of a normal bracket, leaving the subject
- pointer. */
-
- case OP_ONCE:
- {
- const uschar *prev = ecode;
- const uschar *saved_eptr = eptr;
-
- do
- {
- if (match(eptr, ecode+3, offset_top, md, ims, eptrb, match_isgroup))
- break;
- ecode += (ecode[1] << 8) + ecode[2];
- }
- while (*ecode == OP_ALT);
-
- /* If hit the end of the group (which could be repeated), fail */
-
- if (*ecode != OP_ONCE && *ecode != OP_ALT) return FALSE;
-
- /* Continue as from after the assertion, updating the offsets high water
- mark, since extracts may have been taken. */
-
- do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT);
-
- offset_top = md->end_offset_top;
- eptr = md->end_match_ptr;
-
- /* For a non-repeating ket, just continue at this level. This also
- happens for a repeating ket if no characters were matched in the group.
- This is the forcible breaking of infinite loops as implemented in Perl
- 5.005. If there is an options reset, it will get obeyed in the normal
- course of events. */
-
- if (*ecode == OP_KET || eptr == saved_eptr)
- {
- ecode += 3;
- break;
- }
-
- /* The repeating kets try the rest of the pattern or restart from the
- preceding bracket, in the appropriate order. We need to reset any options
- that changed within the bracket before re-running it, so check the next
- opcode. */
-
- if (ecode[3] == OP_OPT)
- {
- ims = (ims & ~PCRE_IMS) | ecode[4];
- DPRINTF(("ims set to %02lx at group repeat\n", ims));
- }
-
- if (*ecode == OP_KETRMIN)
- {
- if (match(eptr, ecode+3, offset_top, md, ims, eptrb, 0) ||
- match(eptr, prev, offset_top, md, ims, eptrb, match_isgroup))
- return TRUE;
- }
- else /* OP_KETRMAX */
- {
- if (match(eptr, prev, offset_top, md, ims, eptrb, match_isgroup) ||
- match(eptr, ecode+3, offset_top, md, ims, eptrb, 0)) return TRUE;
- }
- }
- return FALSE;
-
- /* An alternation is the end of a branch; scan along to find the end of the
- bracketed group and go to there. */
-
- case OP_ALT:
- do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT);
- break;
-
- /* BRAZERO and BRAMINZERO occur just before a bracket group, indicating
- that it may occur zero times. It may repeat infinitely, or not at all -
- i.e. it could be ()* or ()? in the pattern. Brackets with fixed upper
- repeat limits are compiled as a number of copies, with the optional ones
- preceded by BRAZERO or BRAMINZERO. */
-
- case OP_BRAZERO:
- {
- const uschar *next = ecode+1;
- if (match(eptr, next, offset_top, md, ims, eptrb, match_isgroup))
- return TRUE;
- do next += (next[1] << 8) + next[2]; while (*next == OP_ALT);
- ecode = next + 3;
- }
- break;
-
- case OP_BRAMINZERO:
- {
- const uschar *next = ecode+1;
- do next += (next[1] << 8) + next[2]; while (*next == OP_ALT);
- if (match(eptr, next+3, offset_top, md, ims, eptrb, match_isgroup))
- return TRUE;
- ecode++;
- }
- break;
-
- /* End of a group, repeated or non-repeating. If we are at the end of
- an assertion "group", stop matching and return TRUE, but record the
- current high water mark for use by positive assertions. Do this also
- for the "once" (not-backup up) groups. */
-
- case OP_KET:
- case OP_KETRMIN:
- case OP_KETRMAX:
- {
- const uschar *prev = ecode - (ecode[1] << 8) - ecode[2];
- const uschar *saved_eptr = eptrb->saved_eptr;
-
- eptrb = eptrb->prev; /* Back up the stack of bracket start pointers */
-
- if (*prev == OP_ASSERT || *prev == OP_ASSERT_NOT ||
- *prev == OP_ASSERTBACK || *prev == OP_ASSERTBACK_NOT ||
- *prev == OP_ONCE)
- {
- md->end_match_ptr = eptr; /* For ONCE */
- md->end_offset_top = offset_top;
- return TRUE;
- }
-
- /* In all other cases except a conditional group we have to check the
- group number back at the start and if necessary complete handling an
- extraction by setting the offsets and bumping the high water mark. */
-
- if (*prev != OP_COND)
- {
- int number = *prev - OP_BRA;
- int offset = number << 1;
-
-#ifdef DEBUG
- printf("end bracket %d", number);
- printf("\n");
-#endif
-
- if (number > 0)
- {
- if (offset >= md->offset_max) md->offset_overflow = TRUE; else
- {
- md->offset_vector[offset] =
- md->offset_vector[md->offset_end - number];
- md->offset_vector[offset+1] = eptr - md->start_subject;
- if (offset_top <= offset) offset_top = offset + 2;
- }
- }
- }
-
- /* Reset the value of the ims flags, in case they got changed during
- the group. */
-
- ims = original_ims;
- DPRINTF(("ims reset to %02lx\n", ims));
-
- /* For a non-repeating ket, just continue at this level. This also
- happens for a repeating ket if no characters were matched in the group.
- This is the forcible breaking of infinite loops as implemented in Perl
- 5.005. If there is an options reset, it will get obeyed in the normal
- course of events. */
-
- if (*ecode == OP_KET || eptr == saved_eptr)
- {
- ecode += 3;
- break;
- }
-
- /* The repeating kets try the rest of the pattern or restart from the
- preceding bracket, in the appropriate order. */
-
- if (*ecode == OP_KETRMIN)
- {
- if (match(eptr, ecode+3, offset_top, md, ims, eptrb, 0) ||
- match(eptr, prev, offset_top, md, ims, eptrb, match_isgroup))
- return TRUE;
- }
- else /* OP_KETRMAX */
- {
- if (match(eptr, prev, offset_top, md, ims, eptrb, match_isgroup) ||
- match(eptr, ecode+3, offset_top, md, ims, eptrb, 0)) return TRUE;
- }
- }
- return FALSE;
-
- /* Start of subject unless notbol, or after internal newline if multiline */
-
- case OP_CIRC:
- if (md->notbol && eptr == md->start_subject) return FALSE;
- if ((ims & PCRE_MULTILINE) != 0)
- {
- if (eptr != md->start_subject && eptr[-1] != '\n') return FALSE;
- ecode++;
- break;
- }
- /* ... else fall through */
-
- /* Start of subject assertion */
-
- case OP_SOD:
- if (eptr != md->start_subject) return FALSE;
- ecode++;
- break;
-
- /* Assert before internal newline if multiline, or before a terminating
- newline unless endonly is set, else end of subject unless noteol is set. */
-
- case OP_DOLL:
- if ((ims & PCRE_MULTILINE) != 0)
- {
- if (eptr < md->end_subject) { if (*eptr != '\n') return FALSE; }
- else { if (md->noteol) return FALSE; }
- ecode++;
- break;
- }
- else
- {
- if (md->noteol) return FALSE;
- if (!md->endonly)
- {
- if (eptr < md->end_subject - 1 ||
- (eptr == md->end_subject - 1 && *eptr != '\n')) return FALSE;
-
- ecode++;
- break;
- }
- }
- /* ... else fall through */
-
- /* End of subject assertion (\z) */
-
- case OP_EOD:
- if (eptr < md->end_subject) return FALSE;
- ecode++;
- break;
-
- /* End of subject or ending \n assertion (\Z) */
-
- case OP_EODN:
- if (eptr < md->end_subject - 1 ||
- (eptr == md->end_subject - 1 && *eptr != '\n')) return FALSE;
- ecode++;
- break;
-
- /* Word boundary assertions */
-
- case OP_NOT_WORD_BOUNDARY:
- case OP_WORD_BOUNDARY:
- {
- BOOL prev_is_word = (eptr != md->start_subject) &&
- ((md->ctypes[eptr[-1]] & ctype_word) != 0);
- BOOL cur_is_word = (eptr < md->end_subject) &&
- ((md->ctypes[*eptr] & ctype_word) != 0);
- if ((*ecode++ == OP_WORD_BOUNDARY)?
- cur_is_word == prev_is_word : cur_is_word != prev_is_word)
- return FALSE;
- }
- break;
-
- /* Match a single character type; inline for speed */
-
- case OP_ANY:
- if ((ims & PCRE_DOTALL) == 0 && eptr < md->end_subject && *eptr == '\n')
- return FALSE;
- if (eptr++ >= md->end_subject) return FALSE;
-#ifdef SUPPORT_UTF8
- if (md->utf8)
- while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
-#endif
- ecode++;
- break;
-
- case OP_NOT_DIGIT:
- if (eptr >= md->end_subject ||
- (md->ctypes[*eptr++] & ctype_digit) != 0)
- return FALSE;
- ecode++;
- break;
-
- case OP_DIGIT:
- if (eptr >= md->end_subject ||
- (md->ctypes[*eptr++] & ctype_digit) == 0)
- return FALSE;
- ecode++;
- break;
-
- case OP_NOT_WHITESPACE:
- if (eptr >= md->end_subject ||
- (md->ctypes[*eptr++] & ctype_space) != 0)
- return FALSE;
- ecode++;
- break;
-
- case OP_WHITESPACE:
- if (eptr >= md->end_subject ||
- (md->ctypes[*eptr++] & ctype_space) == 0)
- return FALSE;
- ecode++;
- break;
-
- case OP_NOT_WORDCHAR:
- if (eptr >= md->end_subject ||
- (md->ctypes[*eptr++] & ctype_word) != 0)
- return FALSE;
- ecode++;
- break;
-
- case OP_WORDCHAR:
- if (eptr >= md->end_subject ||
- (md->ctypes[*eptr++] & ctype_word) == 0)
- return FALSE;
- ecode++;
- break;
-
- /* Match a back reference, possibly repeatedly. Look past the end of the
- item to see if there is repeat information following. The code is similar
- to that for character classes, but repeated for efficiency. Then obey
- similar code to character type repeats - written out again for speed.
- However, if the referenced string is the empty string, always treat
- it as matched, any number of times (otherwise there could be infinite
- loops). */
-
- case OP_REF:
- {
- int length;
- int offset = ecode[1] << 1; /* Doubled reference number */
- ecode += 2; /* Advance past the item */
-
- /* If the reference is unset, set the length to be longer than the amount
- of subject left; this ensures that every attempt at a match fails. We
- can't just fail here, because of the possibility of quantifiers with zero
- minima. */
-
- length = (offset >= offset_top || md->offset_vector[offset] < 0)?
- md->end_subject - eptr + 1 :
- md->offset_vector[offset+1] - md->offset_vector[offset];
-
- /* Set up for repetition, or handle the non-repeated case */
-
- switch (*ecode)
- {
- case OP_CRSTAR:
- case OP_CRMINSTAR:
- case OP_CRPLUS:
- case OP_CRMINPLUS:
- case OP_CRQUERY:
- case OP_CRMINQUERY:
- c = *ecode++ - OP_CRSTAR;
- minimize = (c & 1) != 0;
- min = rep_min[c]; /* Pick up values from tables; */
- max = rep_max[c]; /* zero for max => infinity */
- if (max == 0) max = INT_MAX;
- break;
-
- case OP_CRRANGE:
- case OP_CRMINRANGE:
- minimize = (*ecode == OP_CRMINRANGE);
- min = (ecode[1] << 8) + ecode[2];
- max = (ecode[3] << 8) + ecode[4];
- if (max == 0) max = INT_MAX;
- ecode += 5;
- break;
-
- default: /* No repeat follows */
- if (!match_ref(offset, eptr, length, md, ims)) return FALSE;
- eptr += length;
- continue; /* With the main loop */
- }
-
- /* If the length of the reference is zero, just continue with the
- main loop. */
-
- if (length == 0) continue;
-
- /* First, ensure the minimum number of matches are present. We get back
- the length of the reference string explicitly rather than passing the
- address of eptr, so that eptr can be a register variable. */
-
- for (i = 1; i <= min; i++)
- {
- if (!match_ref(offset, eptr, length, md, ims)) return FALSE;
- eptr += length;
- }
-
- /* If min = max, continue at the same level without recursion.
- They are not both allowed to be zero. */
-
- if (min == max) continue;
-
- /* If minimizing, keep trying and advancing the pointer */
-
- if (minimize)
- {
- for (i = min;; i++)
- {
- if (match(eptr, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- if (i >= max || !match_ref(offset, eptr, length, md, ims))
- return FALSE;
- eptr += length;
- }
- /* Control never gets here */
- }
-
- /* If maximizing, find the longest string and work backwards */
-
- else
- {
- const uschar *pp = eptr;
- for (i = min; i < max; i++)
- {
- if (!match_ref(offset, eptr, length, md, ims)) break;
- eptr += length;
- }
- while (eptr >= pp)
- {
- if (match(eptr, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- eptr -= length;
- }
- return FALSE;
- }
- }
- /* Control never gets here */
-
-
-
- /* Match a character class, possibly repeatedly. Look past the end of the
- item to see if there is repeat information following. Then obey similar
- code to character type repeats - written out again for speed. */
-
- case OP_CLASS:
- {
- const uschar *data = ecode + 1; /* Save for matching */
- ecode += 33; /* Advance past the item */
-
- switch (*ecode)
- {
- case OP_CRSTAR:
- case OP_CRMINSTAR:
- case OP_CRPLUS:
- case OP_CRMINPLUS:
- case OP_CRQUERY:
- case OP_CRMINQUERY:
- c = *ecode++ - OP_CRSTAR;
- minimize = (c & 1) != 0;
- min = rep_min[c]; /* Pick up values from tables; */
- max = rep_max[c]; /* zero for max => infinity */
- if (max == 0) max = INT_MAX;
- break;
-
- case OP_CRRANGE:
- case OP_CRMINRANGE:
- minimize = (*ecode == OP_CRMINRANGE);
- min = (ecode[1] << 8) + ecode[2];
- max = (ecode[3] << 8) + ecode[4];
- if (max == 0) max = INT_MAX;
- ecode += 5;
- break;
-
- default: /* No repeat follows */
- min = max = 1;
- break;
- }
-
- /* First, ensure the minimum number of matches are present. */
-
- for (i = 1; i <= min; i++)
- {
- if (eptr >= md->end_subject) return FALSE;
- GETCHARINC(c, eptr) /* Get character; increment eptr */
-
-#ifdef SUPPORT_UTF8
- /* We do not yet support class members > 255 */
- if (c > 255) return FALSE;
-#endif
-
- if ((data[c/8] & (1 << (c&7))) != 0) continue;
- return FALSE;
- }
-
- /* If max == min we can continue with the main loop without the
- need to recurse. */
-
- if (min == max) continue;
-
- /* If minimizing, keep testing the rest of the expression and advancing
- the pointer while it matches the class. */
-
- if (minimize)
- {
- for (i = min;; i++)
- {
- if (match(eptr, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- if (i >= max || eptr >= md->end_subject) return FALSE;
- GETCHARINC(c, eptr) /* Get character; increment eptr */
-
-#ifdef SUPPORT_UTF8
- /* We do not yet support class members > 255 */
- if (c > 255) return FALSE;
-#endif
- if ((data[c/8] & (1 << (c&7))) != 0) continue;
- return FALSE;
- }
- /* Control never gets here */
- }
-
- /* If maximizing, find the longest possible run, then work backwards. */
-
- else
- {
- const uschar *pp = eptr;
- int len = 1;
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject) break;
- GETCHARLEN(c, eptr, len) /* Get character, set length if UTF-8 */
-
-#ifdef SUPPORT_UTF8
- /* We do not yet support class members > 255 */
- if (c > 255) break;
-#endif
- if ((data[c/8] & (1 << (c&7))) == 0) break;
- eptr += len;
- }
-
- while (eptr >= pp)
- {
- if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
-
-#ifdef SUPPORT_UTF8
- BACKCHAR(eptr)
-#endif
- }
- return FALSE;
- }
- }
- /* Control never gets here */
-
- /* Match a run of characters */
-
- case OP_CHARS:
- {
- register int length = ecode[1];
- ecode += 2;
-
-#ifdef DEBUG /* Sigh. Some compilers never learn. */
- if (eptr >= md->end_subject)
- printf("matching subject against pattern ");
- else
- {
- printf("matching subject ");
- pchars(eptr, length, TRUE, md);
- printf(" against pattern ");
- }
- pchars(ecode, length, FALSE, md);
- printf("\n");
-#endif
-
- if (length > md->end_subject - eptr) return FALSE;
- if ((ims & PCRE_CASELESS) != 0)
- {
- while (length-- > 0)
- if (md->lcc[*ecode++] != md->lcc[*eptr++])
- return FALSE;
- }
- else
- {
- while (length-- > 0) if (*ecode++ != *eptr++) return FALSE;
- }
- }
- break;
-
- /* Match a single character repeatedly; different opcodes share code. */
-
- case OP_EXACT:
- min = max = (ecode[1] << 8) + ecode[2];
- ecode += 3;
- goto REPEATCHAR;
-
- case OP_UPTO:
- case OP_MINUPTO:
- min = 0;
- max = (ecode[1] << 8) + ecode[2];
- minimize = *ecode == OP_MINUPTO;
- ecode += 3;
- goto REPEATCHAR;
-
- case OP_STAR:
- case OP_MINSTAR:
- case OP_PLUS:
- case OP_MINPLUS:
- case OP_QUERY:
- case OP_MINQUERY:
- c = *ecode++ - OP_STAR;
- minimize = (c & 1) != 0;
- min = rep_min[c]; /* Pick up values from tables; */
- max = rep_max[c]; /* zero for max => infinity */
- if (max == 0) max = INT_MAX;
-
- /* Common code for all repeated single-character matches. We can give
- up quickly if there are fewer than the minimum number of characters left in
- the subject. */
-
- REPEATCHAR:
- if (min > md->end_subject - eptr) return FALSE;
- c = *ecode++;
-
- /* The code is duplicated for the caseless and caseful cases, for speed,
- since matching characters is likely to be quite common. First, ensure the
- minimum number of matches are present. If min = max, continue at the same
- level without recursing. Otherwise, if minimizing, keep trying the rest of
- the expression and advancing one matching character if failing, up to the
- maximum. Alternatively, if maximizing, find the maximum number of
- characters and work backwards. */
-
- DPRINTF(("matching %c{%d,%d} against subject %.*s\n", c, min, max,
- max, eptr));
-
- if ((ims & PCRE_CASELESS) != 0)
- {
- c = md->lcc[c];
- for (i = 1; i <= min; i++)
- if (c != md->lcc[*eptr++]) return FALSE;
- if (min == max) continue;
- if (minimize)
- {
- for (i = min;; i++)
- {
- if (match(eptr, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- if (i >= max || eptr >= md->end_subject ||
- c != md->lcc[*eptr++])
- return FALSE;
- }
- /* Control never gets here */
- }
- else
- {
- const uschar *pp = eptr;
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || c != md->lcc[*eptr]) break;
- eptr++;
- }
- while (eptr >= pp)
- if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- return FALSE;
- }
- /* Control never gets here */
- }
-
- /* Caseful comparisons */
-
- else
- {
- for (i = 1; i <= min; i++) if (c != *eptr++) return FALSE;
- if (min == max) continue;
- if (minimize)
- {
- for (i = min;; i++)
- {
- if (match(eptr, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- if (i >= max || eptr >= md->end_subject || c != *eptr++) return FALSE;
- }
- /* Control never gets here */
- }
- else
- {
- const uschar *pp = eptr;
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || c != *eptr) break;
- eptr++;
- }
- while (eptr >= pp)
- if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- return FALSE;
- }
- }
- /* Control never gets here */
-
- /* Match a negated single character */
-
- case OP_NOT:
- if (eptr >= md->end_subject) return FALSE;
- ecode++;
- if ((ims & PCRE_CASELESS) != 0)
- {
- if (md->lcc[*ecode++] == md->lcc[*eptr++]) return FALSE;
- }
- else
- {
- if (*ecode++ == *eptr++) return FALSE;
- }
- break;
-
- /* Match a negated single character repeatedly. This is almost a repeat of
- the code for a repeated single character, but I haven't found a nice way of
- commoning these up that doesn't require a test of the positive/negative
- option for each character match. Maybe that wouldn't add very much to the
- time taken, but character matching *is* what this is all about... */
-
- case OP_NOTEXACT:
- min = max = (ecode[1] << 8) + ecode[2];
- ecode += 3;
- goto REPEATNOTCHAR;
-
- case OP_NOTUPTO:
- case OP_NOTMINUPTO:
- min = 0;
- max = (ecode[1] << 8) + ecode[2];
- minimize = *ecode == OP_NOTMINUPTO;
- ecode += 3;
- goto REPEATNOTCHAR;
-
- case OP_NOTSTAR:
- case OP_NOTMINSTAR:
- case OP_NOTPLUS:
- case OP_NOTMINPLUS:
- case OP_NOTQUERY:
- case OP_NOTMINQUERY:
- c = *ecode++ - OP_NOTSTAR;
- minimize = (c & 1) != 0;
- min = rep_min[c]; /* Pick up values from tables; */
- max = rep_max[c]; /* zero for max => infinity */
- if (max == 0) max = INT_MAX;
-
- /* Common code for all repeated single-character matches. We can give
- up quickly if there are fewer than the minimum number of characters left in
- the subject. */
-
- REPEATNOTCHAR:
- if (min > md->end_subject - eptr) return FALSE;
- c = *ecode++;
-
- /* The code is duplicated for the caseless and caseful cases, for speed,
- since matching characters is likely to be quite common. First, ensure the
- minimum number of matches are present. If min = max, continue at the same
- level without recursing. Otherwise, if minimizing, keep trying the rest of
- the expression and advancing one matching character if failing, up to the
- maximum. Alternatively, if maximizing, find the maximum number of
- characters and work backwards. */
-
- DPRINTF(("negative matching %c{%d,%d} against subject %.*s\n", c, min, max,
- max, eptr));
-
- if ((ims & PCRE_CASELESS) != 0)
- {
- c = md->lcc[c];
- for (i = 1; i <= min; i++)
- if (c == md->lcc[*eptr++]) return FALSE;
- if (min == max) continue;
- if (minimize)
- {
- for (i = min;; i++)
- {
- if (match(eptr, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- if (i >= max || eptr >= md->end_subject ||
- c == md->lcc[*eptr++])
- return FALSE;
- }
- /* Control never gets here */
- }
- else
- {
- const uschar *pp = eptr;
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || c == md->lcc[*eptr]) break;
- eptr++;
- }
- while (eptr >= pp)
- if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- return FALSE;
- }
- /* Control never gets here */
- }
-
- /* Caseful comparisons */
-
- else
- {
- for (i = 1; i <= min; i++) if (c == *eptr++) return FALSE;
- if (min == max) continue;
- if (minimize)
- {
- for (i = min;; i++)
- {
- if (match(eptr, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- if (i >= max || eptr >= md->end_subject || c == *eptr++) return FALSE;
- }
- /* Control never gets here */
- }
- else
- {
- const uschar *pp = eptr;
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || c == *eptr) break;
- eptr++;
- }
- while (eptr >= pp)
- if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
- return FALSE;
- }
- }
- /* Control never gets here */
-
- /* Match a single character type repeatedly; several different opcodes
- share code. This is very similar to the code for single characters, but we
- repeat it in the interests of efficiency. */
-
- case OP_TYPEEXACT:
- min = max = (ecode[1] << 8) + ecode[2];
- minimize = TRUE;
- ecode += 3;
- goto REPEATTYPE;
-
- case OP_TYPEUPTO:
- case OP_TYPEMINUPTO:
- min = 0;
- max = (ecode[1] << 8) + ecode[2];
- minimize = *ecode == OP_TYPEMINUPTO;
- ecode += 3;
- goto REPEATTYPE;
-
- case OP_TYPESTAR:
- case OP_TYPEMINSTAR:
- case OP_TYPEPLUS:
- case OP_TYPEMINPLUS:
- case OP_TYPEQUERY:
- case OP_TYPEMINQUERY:
- c = *ecode++ - OP_TYPESTAR;
- minimize = (c & 1) != 0;
- min = rep_min[c]; /* Pick up values from tables; */
- max = rep_max[c]; /* zero for max => infinity */
- if (max == 0) max = INT_MAX;
-
- /* Common code for all repeated single character type matches */
-
- REPEATTYPE:
- ctype = *ecode++; /* Code for the character type */
-
- /* First, ensure the minimum number of matches are present. Use inline
- code for maximizing the speed, and do the type test once at the start
- (i.e. keep it out of the loop). Also we can test that there are at least
- the minimum number of bytes before we start, except when doing '.' in
- UTF8 mode. Leave the test in in all cases; in the special case we have
- to test after each character. */
-
- if (min > md->end_subject - eptr) return FALSE;
- if (min > 0) switch(ctype)
- {
- case OP_ANY:
-#ifdef SUPPORT_UTF8
- if (md->utf8)
- {
- for (i = 1; i <= min; i++)
- {
- if (eptr >= md->end_subject ||
- (*eptr++ == '\n' && (ims & PCRE_DOTALL) == 0))
- return FALSE;
- while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
- }
- break;
- }
-#endif
- /* Non-UTF8 can be faster */
- if ((ims & PCRE_DOTALL) == 0)
- { for (i = 1; i <= min; i++) if (*eptr++ == '\n') return FALSE; }
- else eptr += min;
- break;
-
- case OP_NOT_DIGIT:
- for (i = 1; i <= min; i++)
- if ((md->ctypes[*eptr++] & ctype_digit) != 0) return FALSE;
- break;
-
- case OP_DIGIT:
- for (i = 1; i <= min; i++)
- if ((md->ctypes[*eptr++] & ctype_digit) == 0) return FALSE;
- break;
-
- case OP_NOT_WHITESPACE:
- for (i = 1; i <= min; i++)
- if ((md->ctypes[*eptr++] & ctype_space) != 0) return FALSE;
- break;
-
- case OP_WHITESPACE:
- for (i = 1; i <= min; i++)
- if ((md->ctypes[*eptr++] & ctype_space) == 0) return FALSE;
- break;
-
- case OP_NOT_WORDCHAR:
- for (i = 1; i <= min; i++)
- if ((md->ctypes[*eptr++] & ctype_word) != 0)
- return FALSE;
- break;
-
- case OP_WORDCHAR:
- for (i = 1; i <= min; i++)
- if ((md->ctypes[*eptr++] & ctype_word) == 0)
- return FALSE;
- break;
- }
-
- /* If min = max, continue at the same level without recursing */
-
- if (min == max) continue;
-
- /* If minimizing, we have to test the rest of the pattern before each
- subsequent match. */
-
- if (minimize)
- {
- for (i = min;; i++)
- {
- if (match(eptr, ecode, offset_top, md, ims, eptrb, 0)) return TRUE;
- if (i >= max || eptr >= md->end_subject) return FALSE;
-
- c = *eptr++;
- switch(ctype)
- {
- case OP_ANY:
- if ((ims & PCRE_DOTALL) == 0 && c == '\n') return FALSE;
-#ifdef SUPPORT_UTF8
- if (md->utf8)
- while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
-#endif
- break;
-
- case OP_NOT_DIGIT:
- if ((md->ctypes[c] & ctype_digit) != 0) return FALSE;
- break;
-
- case OP_DIGIT:
- if ((md->ctypes[c] & ctype_digit) == 0) return FALSE;
- break;
-
- case OP_NOT_WHITESPACE:
- if ((md->ctypes[c] & ctype_space) != 0) return FALSE;
- break;
-
- case OP_WHITESPACE:
- if ((md->ctypes[c] & ctype_space) == 0) return FALSE;
- break;
-
- case OP_NOT_WORDCHAR:
- if ((md->ctypes[c] & ctype_word) != 0) return FALSE;
- break;
-
- case OP_WORDCHAR:
- if ((md->ctypes[c] & ctype_word) == 0) return FALSE;
- break;
- }
- }
- /* Control never gets here */
- }
-
- /* If maximizing it is worth using inline code for speed, doing the type
- test once at the start (i.e. keep it out of the loop). */
-
- else
- {
- const uschar *pp = eptr;
- switch(ctype)
- {
- case OP_ANY:
-
- /* Special code is required for UTF8, but when the maximum is unlimited
- we don't need it. */
-
-#ifdef SUPPORT_UTF8
- if (md->utf8 && max < INT_MAX)
- {
- if ((ims & PCRE_DOTALL) == 0)
- {
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || *eptr++ == '\n') break;
- while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
- }
- }
- else
- {
- for (i = min; i < max; i++)
- {
- eptr++;
- while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++;
- }
- }
- break;
- }
-#endif
- /* Non-UTF8 can be faster */
- if ((ims & PCRE_DOTALL) == 0)
- {
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || *eptr == '\n') break;
- eptr++;
- }
- }
- else
- {
- c = max - min;
- if (c > md->end_subject - eptr) c = md->end_subject - eptr;
- eptr += c;
- }
- break;
-
- case OP_NOT_DIGIT:
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) != 0)
- break;
- eptr++;
- }
- break;
-
- case OP_DIGIT:
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_digit) == 0)
- break;
- eptr++;
- }
- break;
-
- case OP_NOT_WHITESPACE:
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) != 0)
- break;
- eptr++;
- }
- break;
-
- case OP_WHITESPACE:
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_space) == 0)
- break;
- eptr++;
- }
- break;
-
- case OP_NOT_WORDCHAR:
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) != 0)
- break;
- eptr++;
- }
- break;
-
- case OP_WORDCHAR:
- for (i = min; i < max; i++)
- {
- if (eptr >= md->end_subject || (md->ctypes[*eptr] & ctype_word) == 0)
- break;
- eptr++;
- }
- break;
- }
-
- while (eptr >= pp)
- {
- if (match(eptr--, ecode, offset_top, md, ims, eptrb, 0))
- return TRUE;
-#ifdef SUPPORT_UTF8
- if (md->utf8)
- while (eptr > pp && (*eptr & 0xc0) == 0x80) eptr--;
-#endif
- }
- return FALSE;
- }
- /* Control never gets here */
-
- /* There's been some horrible disaster. */
-
- default:
- DPRINTF(("Unknown opcode %d\n", *ecode));
- md->errorcode = PCRE_ERROR_UNKNOWN_NODE;
- return FALSE;
- }
-
- /* Do not stick any code in here without much thought; it is assumed
- that "continue" in the code above comes out to here to repeat the main
- loop. */
-
- } /* End of main loop */
-/* Control never reaches here */
-}
-
-
-
-
-/*************************************************
-* Execute a Regular Expression *
-*************************************************/
-
-/* This function applies a compiled re to a subject string and picks out
-portions of the string if it matches. Two elements in the vector are set for
-each substring: the offsets to the start and end of the substring.
-
-Arguments:
- external_re points to the compiled expression
- external_extra points to "hints" from pcre_study() or is NULL
- subject points to the subject string
- length length of subject string (may contain binary zeros)
- start_offset where to start in the subject string
- options option bits
- offsets points to a vector of ints to be filled in with offsets
- offsetcount the number of elements in the vector
-
-Returns: > 0 => success; value is the number of elements filled in
- = 0 => success, but offsets is not big enough
- -1 => failed to match
- < -1 => some kind of unexpected problem
-*/
-
-int
-pcre_exec(const pcre *external_re, const pcre_extra *external_extra,
- const char *subject, int length, int start_offset, int options, int *offsets,
- int offsetcount)
-{
-int resetcount, ocount;
-int first_char = -1;
-int req_char = -1;
-int req_char2 = -1;
-unsigned long int ims = 0;
-match_data match_block;
-const uschar *start_bits = NULL;
-const uschar *start_match = (const uschar *)subject + start_offset;
-const uschar *end_subject;
-const uschar *req_char_ptr = start_match - 1;
-const real_pcre *re = (const real_pcre *)external_re;
-const real_pcre_extra *extra = (const real_pcre_extra *)external_extra;
-BOOL using_temporary_offsets = FALSE;
-BOOL anchored = ((re->options | options) & PCRE_ANCHORED) != 0;
-BOOL startline = (re->options & PCRE_STARTLINE) != 0;
-
-if ((options & ~PUBLIC_EXEC_OPTIONS) != 0) return PCRE_ERROR_BADOPTION;
-
-if (re == NULL || subject == NULL ||
- (offsets == NULL && offsetcount > 0)) return PCRE_ERROR_NULL;
-if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
-
-match_block.start_pattern = re->code;
-match_block.start_subject = (const uschar *)subject;
-match_block.end_subject = match_block.start_subject + length;
-end_subject = match_block.end_subject;
-
-match_block.endonly = (re->options & PCRE_DOLLAR_ENDONLY) != 0;
-match_block.utf8 = (re->options & PCRE_UTF8) != 0;
-
-match_block.notbol = (options & PCRE_NOTBOL) != 0;
-match_block.noteol = (options & PCRE_NOTEOL) != 0;
-match_block.notempty = (options & PCRE_NOTEMPTY) != 0;
-
-match_block.errorcode = PCRE_ERROR_NOMATCH; /* Default error */
-
-match_block.lcc = re->tables + lcc_offset;
-match_block.ctypes = re->tables + ctypes_offset;
-
-/* The ims options can vary during the matching as a result of the presence
-of (?ims) items in the pattern. They are kept in a local variable so that
-restoring at the exit of a group is easy. */
-
-ims = re->options & (PCRE_CASELESS|PCRE_MULTILINE|PCRE_DOTALL);
-
-/* If the expression has got more back references than the offsets supplied can
-hold, we get a temporary bit of working store to use during the matching.
-Otherwise, we can use the vector supplied, rounding down its size to a multiple
-of 3. */
-
-ocount = offsetcount - (offsetcount % 3);
-
-if (re->top_backref > 0 && re->top_backref >= ocount/3)
- {
- ocount = re->top_backref * 3 + 3;
- match_block.offset_vector = (int *)(pcre_malloc)(ocount * sizeof(int));
- if (match_block.offset_vector == NULL) return PCRE_ERROR_NOMEMORY;
- using_temporary_offsets = TRUE;
- DPRINTF(("Got memory to hold back references\n"));
- }
-else match_block.offset_vector = offsets;
-
-match_block.offset_end = ocount;
-match_block.offset_max = (2*ocount)/3;
-match_block.offset_overflow = FALSE;
-
-/* Compute the minimum number of offsets that we need to reset each time. Doing
-this makes a huge difference to execution time when there aren't many brackets
-in the pattern. */
-
-resetcount = 2 + re->top_bracket * 2;
-if (resetcount > offsetcount) resetcount = ocount;
-
-/* Reset the working variable associated with each extraction. These should
-never be used unless previously set, but they get saved and restored, and so we
-initialize them to avoid reading uninitialized locations. */
-
-if (match_block.offset_vector != NULL)
- {
- register int *iptr = match_block.offset_vector + ocount;
- register int *iend = iptr - resetcount/2 + 1;
- while (--iptr >= iend) *iptr = -1;
- }
-
-/* Set up the first character to match, if available. The first_char value is
-never set for an anchored regular expression, but the anchoring may be forced
-at run time, so we have to test for anchoring. The first char may be unset for
-an unanchored pattern, of course. If there's no first char and the pattern was
-studied, there may be a bitmap of possible first characters. */
-
-if (!anchored)
- {
- if ((re->options & PCRE_FIRSTSET) != 0)
- {
- first_char = re->first_char;
- if ((ims & PCRE_CASELESS) != 0) first_char = match_block.lcc[first_char];
- }
- else
- if (!startline && extra != NULL &&
- (extra->options & PCRE_STUDY_MAPPED) != 0)
- start_bits = extra->start_bits;
- }
-
-/* For anchored or unanchored matches, there may be a "last known required
-character" set. If the PCRE_CASELESS is set, implying that the match starts
-caselessly, or if there are any changes of this flag within the regex, set up
-both cases of the character. Otherwise set the two values the same, which will
-avoid duplicate testing (which takes significant time). This covers the vast
-majority of cases. It will be suboptimal when the case flag changes in a regex
-and the required character in fact is caseful. */
-
-if ((re->options & PCRE_REQCHSET) != 0)
- {
- req_char = re->req_char;
- req_char2 = ((re->options & (PCRE_CASELESS | PCRE_ICHANGED)) != 0)?
- (re->tables + fcc_offset)[req_char] : req_char;
- }
-
-/* Loop for handling unanchored repeated matching attempts; for anchored regexs
-the loop runs just once. */
-
-do
- {
- int rc;
- register int *iptr = match_block.offset_vector;
- register int *iend = iptr + resetcount;
-
- /* Reset the maximum number of extractions we might see. */
-
- while (iptr < iend) *iptr++ = -1;
-
- /* Advance to a unique first char if possible */
-
- if (first_char >= 0)
- {
- if ((ims & PCRE_CASELESS) != 0)
- while (start_match < end_subject &&
- match_block.lcc[*start_match] != first_char)
- start_match++;
- else
- while (start_match < end_subject && *start_match != first_char)
- start_match++;
- }
-
- /* Or to just after \n for a multiline match if possible */
-
- else if (startline)
- {
- if (start_match > match_block.start_subject + start_offset)
- {
- while (start_match < end_subject && start_match[-1] != '\n')
- start_match++;
- }
- }
-
- /* Or to a non-unique first char after study */
-
- else if (start_bits != NULL)
- {
- while (start_match < end_subject)
- {
- register int c = *start_match;
- if ((start_bits[c/8] & (1 << (c&7))) == 0) start_match++; else break;
- }
- }
-
-#ifdef DEBUG /* Sigh. Some compilers never learn. */
- printf(">>>> Match against: ");
- pchars(start_match, end_subject - start_match, TRUE, &match_block);
- printf("\n");
-#endif
-
- /* If req_char is set, we know that that character must appear in the subject
- for the match to succeed. If the first character is set, req_char must be
- later in the subject; otherwise the test starts at the match point. This
- optimization can save a huge amount of backtracking in patterns with nested
- unlimited repeats that aren't going to match. We don't know what the state of
- case matching may be when this character is hit, so test for it in both its
- cases if necessary. However, the different cased versions will not be set up
- unless PCRE_CASELESS was given or the casing state changes within the regex.
- Writing separate code makes it go faster, as does using an autoincrement and
- backing off on a match. */
-
- if (req_char >= 0)
- {
- register const uschar *p = start_match + ((first_char >= 0)? 1 : 0);
-
- /* We don't need to repeat the search if we haven't yet reached the
- place we found it at last time. */
-
- if (p > req_char_ptr)
- {
- /* Do a single test if no case difference is set up */
-
- if (req_char == req_char2)
- {
- while (p < end_subject)
- {
- if (*p++ == req_char) { p--; break; }
- }
- }
-
- /* Otherwise test for either case */
-
- else
- {
- while (p < end_subject)
- {
- register int pp = *p++;
- if (pp == req_char || pp == req_char2) { p--; break; }
- }
- }
-
- /* If we can't find the required character, break the matching loop */
-
- if (p >= end_subject) break;
-
- /* If we have found the required character, save the point where we
- found it, so that we don't search again next time round the loop if
- the start hasn't passed this character yet. */
-
- req_char_ptr = p;
- }
- }
-
- /* When a match occurs, substrings will be set for all internal extractions;
- we just need to set up the whole thing as substring 0 before returning. If
- there were too many extractions, set the return code to zero. In the case
- where we had to get some local store to hold offsets for backreferences, copy
- those back references that we can. In this case there need not be overflow
- if certain parts of the pattern were not used. */
-
- match_block.start_match = start_match;
- if (!match(start_match, re->code, 2, &match_block, ims, NULL, match_isgroup))
- continue;
-
- /* Copy the offset information from temporary store if necessary */
-
- if (using_temporary_offsets)
- {
- if (offsetcount >= 4)
- {
- memcpy(offsets + 2, match_block.offset_vector + 2,
- (offsetcount - 2) * sizeof(int));
- DPRINTF(("Copied offsets from temporary memory\n"));
- }
- if (match_block.end_offset_top > offsetcount)
- match_block.offset_overflow = TRUE;
-
- DPRINTF(("Freeing temporary memory\n"));
- (pcre_free)(match_block.offset_vector);
- }
-
- rc = match_block.offset_overflow? 0 : match_block.end_offset_top/2;
-
- if (match_block.offset_end < 2) rc = 0; else
- {
- offsets[0] = start_match - match_block.start_subject;
- offsets[1] = match_block.end_match_ptr - match_block.start_subject;
- }
-
- DPRINTF((">>>> returning %d\n", rc));
- return rc;
- }
-
-/* This "while" is the end of the "do" above */
-
-while (!anchored &&
- match_block.errorcode == PCRE_ERROR_NOMATCH &&
- start_match++ < end_subject);
-
-if (using_temporary_offsets)
- {
- DPRINTF(("Freeing temporary memory\n"));
- (pcre_free)(match_block.offset_vector);
- }
-
-DPRINTF((">>>> returning %d\n", match_block.errorcode));
-
-return match_block.errorcode;
-}
-
-/* End of pcre.c */
diff --git a/pcre/pcre.def b/pcre/pcre.def
deleted file mode 100644
index 0e8cf3f4..00000000
--- a/pcre/pcre.def
+++ /dev/null
@@ -1,19 +0,0 @@
-EXPORTS
-
-pcre_malloc DATA
-pcre_free DATA
-
-pcre_compile
-pcre_copy_substring
-pcre_exec
-pcre_get_substring
-pcre_get_substring_list
-pcre_info
-pcre_maketables
-pcre_study
-pcre_version
-
-regcomp
-regexec
-regerror
-regfree
diff --git a/pcre/pcre.h b/pcre/pcre.h
deleted file mode 100644
index d27ba859..00000000
--- a/pcre/pcre.h
+++ /dev/null
@@ -1,110 +0,0 @@
-/*************************************************
-* Perl-Compatible Regular Expressions *
-*************************************************/
-
-/* Copyright (c) 1997-2000 University of Cambridge */
-
-#ifndef _PCRE_H
-#define _PCRE_H
-
-/* The file pcre.h is build by "configure". Do not edit it; instead
-make changes to pcre.in. */
-
-#define PCRE_MAJOR 3
-#define PCRE_MINOR 4
-#define PCRE_DATE 22-Aug-2000
-
-/* Win32 uses DLL by default */
-
-#ifdef _WIN32
-# ifdef STATIC_PCRE
-# define PCRE_DL_IMPORT
-# else
-# define PCRE_DL_IMPORT __declspec(dllimport)
-# endif
-#else
-# define PCRE_DL_IMPORT
-#endif
-
-/* Have to include stdlib.h in order to ensure that size_t is defined;
-it is needed here for malloc. */
-
-#include
-
-/* Allow for C++ users */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* Options */
-
-#define PCRE_CASELESS 0x0001
-#define PCRE_MULTILINE 0x0002
-#define PCRE_DOTALL 0x0004
-#define PCRE_EXTENDED 0x0008
-#define PCRE_ANCHORED 0x0010
-#define PCRE_DOLLAR_ENDONLY 0x0020
-#define PCRE_EXTRA 0x0040
-#define PCRE_NOTBOL 0x0080
-#define PCRE_NOTEOL 0x0100
-#define PCRE_UNGREEDY 0x0200
-#define PCRE_NOTEMPTY 0x0400
-#define PCRE_UTF8 0x0800
-
-/* Exec-time and get-time error codes */
-
-#define PCRE_ERROR_NOMATCH (-1)
-#define PCRE_ERROR_NULL (-2)
-#define PCRE_ERROR_BADOPTION (-3)
-#define PCRE_ERROR_BADMAGIC (-4)
-#define PCRE_ERROR_UNKNOWN_NODE (-5)
-#define PCRE_ERROR_NOMEMORY (-6)
-#define PCRE_ERROR_NOSUBSTRING (-7)
-
-/* Request types for pcre_fullinfo() */
-
-#define PCRE_INFO_OPTIONS 0
-#define PCRE_INFO_SIZE 1
-#define PCRE_INFO_CAPTURECOUNT 2
-#define PCRE_INFO_BACKREFMAX 3
-#define PCRE_INFO_FIRSTCHAR 4
-#define PCRE_INFO_FIRSTTABLE 5
-#define PCRE_INFO_LASTLITERAL 6
-
-/* Types */
-
-typedef void pcre;
-typedef void pcre_extra;
-
-/* Store get and free functions. These can be set to alternative malloc/free
-functions if required. Some magic is required for Win32 DLL; it is null on
-other OS. */
-
-PCRE_DL_IMPORT extern void *(*pcre_malloc)(size_t);
-PCRE_DL_IMPORT extern void (*pcre_free)(void *);
-
-#undef PCRE_DL_IMPORT
-
-/* Functions */
-
-extern pcre *pcre_compile(const char *, int, const char **, int *,
- const unsigned char *);
-extern int pcre_copy_substring(const char *, int *, int, int, char *, int);
-extern int pcre_exec(const pcre *, const pcre_extra *, const char *,
- int, int, int, int *, int);
-extern void pcre_free_substring(const char *);
-extern void pcre_free_substring_list(const char **);
-extern int pcre_get_substring(const char *, int *, int, int, const char **);
-extern int pcre_get_substring_list(const char *, int *, int, const char ***);
-extern int pcre_info(const pcre *, int *, int *);
-extern int pcre_fullinfo(const pcre *, const pcre_extra *, int, void *);
-extern unsigned const char *pcre_maketables(void);
-extern pcre_extra *pcre_study(const pcre *, int, const char **);
-extern const char *pcre_version(void);
-
-#ifdef __cplusplus
-} /* extern "C" */
-#endif
-
-#endif /* End of pcre.h */
diff --git a/pcre/pcre.in b/pcre/pcre.in
deleted file mode 100644
index d698f403..00000000
--- a/pcre/pcre.in
+++ /dev/null
@@ -1,110 +0,0 @@
-/*************************************************
-* Perl-Compatible Regular Expressions *
-*************************************************/
-
-/* Copyright (c) 1997-2000 University of Cambridge */
-
-#ifndef _PCRE_H
-#define _PCRE_H
-
-/* The file pcre.h is build by "configure". Do not edit it; instead
-make changes to pcre.in. */
-
-#define PCRE_MAJOR @PCRE_MAJOR@
-#define PCRE_MINOR @PCRE_MINOR@
-#define PCRE_DATE @PCRE_DATE@
-
-/* Win32 uses DLL by default */
-
-#ifdef _WIN32
-# ifdef STATIC_PCRE
-# define PCRE_DL_IMPORT
-# else
-# define PCRE_DL_IMPORT __declspec(dllimport)
-# endif
-#else
-# define PCRE_DL_IMPORT
-#endif
-
-/* Have to include stdlib.h in order to ensure that size_t is defined;
-it is needed here for malloc. */
-
-#include
-
-/* Allow for C++ users */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* Options */
-
-#define PCRE_CASELESS 0x0001
-#define PCRE_MULTILINE 0x0002
-#define PCRE_DOTALL 0x0004
-#define PCRE_EXTENDED 0x0008
-#define PCRE_ANCHORED 0x0010
-#define PCRE_DOLLAR_ENDONLY 0x0020
-#define PCRE_EXTRA 0x0040
-#define PCRE_NOTBOL 0x0080
-#define PCRE_NOTEOL 0x0100
-#define PCRE_UNGREEDY 0x0200
-#define PCRE_NOTEMPTY 0x0400
-#define PCRE_UTF8 0x0800
-
-/* Exec-time and get-time error codes */
-
-#define PCRE_ERROR_NOMATCH (-1)
-#define PCRE_ERROR_NULL (-2)
-#define PCRE_ERROR_BADOPTION (-3)
-#define PCRE_ERROR_BADMAGIC (-4)
-#define PCRE_ERROR_UNKNOWN_NODE (-5)
-#define PCRE_ERROR_NOMEMORY (-6)
-#define PCRE_ERROR_NOSUBSTRING (-7)
-
-/* Request types for pcre_fullinfo() */
-
-#define PCRE_INFO_OPTIONS 0
-#define PCRE_INFO_SIZE 1
-#define PCRE_INFO_CAPTURECOUNT 2
-#define PCRE_INFO_BACKREFMAX 3
-#define PCRE_INFO_FIRSTCHAR 4
-#define PCRE_INFO_FIRSTTABLE 5
-#define PCRE_INFO_LASTLITERAL 6
-
-/* Types */
-
-typedef void pcre;
-typedef void pcre_extra;
-
-/* Store get and free functions. These can be set to alternative malloc/free
-functions if required. Some magic is required for Win32 DLL; it is null on
-other OS. */
-
-PCRE_DL_IMPORT extern void *(*pcre_malloc)(size_t);
-PCRE_DL_IMPORT extern void (*pcre_free)(void *);
-
-#undef PCRE_DL_IMPORT
-
-/* Functions */
-
-extern pcre *pcre_compile(const char *, int, const char **, int *,
- const unsigned char *);
-extern int pcre_copy_substring(const char *, int *, int, int, char *, int);
-extern int pcre_exec(const pcre *, const pcre_extra *, const char *,
- int, int, int, int *, int);
-extern void pcre_free_substring(const char *);
-extern void pcre_free_substring_list(const char **);
-extern int pcre_get_substring(const char *, int *, int, int, const char **);
-extern int pcre_get_substring_list(const char *, int *, int, const char ***);
-extern int pcre_info(const pcre *, int *, int *);
-extern int pcre_fullinfo(const pcre *, const pcre_extra *, int, void *);
-extern unsigned const char *pcre_maketables(void);
-extern pcre_extra *pcre_study(const pcre *, int, const char **);
-extern const char *pcre_version(void);
-
-#ifdef __cplusplus
-} /* extern "C" */
-#endif
-
-#endif /* End of pcre.h */
diff --git a/pcre/pcregrep.c b/pcre/pcregrep.c
deleted file mode 100644
index e8c934ef..00000000
--- a/pcre/pcregrep.c
+++ /dev/null
@@ -1,228 +0,0 @@
-/*************************************************
-* pcregrep program *
-*************************************************/
-
-/* This is a grep program that uses the PCRE regular expression library to do
-its pattern matching. */
-
-#include
-#include
-#include
-#include
-#include "config.h"
-#include "pcre.h"
-
-#define FALSE 0
-#define TRUE 1
-
-typedef int BOOL;
-
-
-
-/*************************************************
-* Global variables *
-*************************************************/
-
-static pcre *pattern;
-static pcre_extra *hints;
-
-static BOOL count_only = FALSE;
-static BOOL filenames_only = FALSE;
-static BOOL invert = FALSE;
-static BOOL number = FALSE;
-static BOOL silent = FALSE;
-static BOOL whole_lines = FALSE;
-
-
-
-#if ! HAVE_STRERROR
-/*************************************************
-* Provide strerror() for non-ANSI libraries *
-*************************************************/
-
-/* Some old-fashioned systems still around (e.g. SunOS4) don't have strerror()
-in their libraries, but can provide the same facility by this simple
-alternative function. */
-
-extern int sys_nerr;
-extern char *sys_errlist[];
-
-char *
-strerror(int n)
-{
-if (n < 0 || n >= sys_nerr) return "unknown error number";
-return sys_errlist[n];
-}
-#endif /* HAVE_STRERROR */
-
-
-
-/*************************************************
-* Grep an individual file *
-*************************************************/
-
-static int
-pcregrep(FILE *in, char *name)
-{
-int rc = 1;
-int linenumber = 0;
-int count = 0;
-int offsets[99];
-char buffer[BUFSIZ];
-
-while (fgets(buffer, sizeof(buffer), in) != NULL)
- {
- BOOL match;
- int length = (int)strlen(buffer);
- if (length > 0 && buffer[length-1] == '\n') buffer[--length] = 0;
- linenumber++;
-
- match = pcre_exec(pattern, hints, buffer, length, 0, 0, offsets, 99) >= 0;
- if (match && whole_lines && offsets[1] != length) match = FALSE;
-
- if (match != invert)
- {
- if (count_only) count++;
-
- else if (filenames_only)
- {
- fprintf(stdout, "%s\n", (name == NULL)? "" : name);
- return 0;
- }
-
- else if (silent) return 0;
-
- else
- {
- if (name != NULL) fprintf(stdout, "%s:", name);
- if (number) fprintf(stdout, "%d:", linenumber);
- fprintf(stdout, "%s\n", buffer);
- }
-
- rc = 0;
- }
- }
-
-if (count_only)
- {
- if (name != NULL) fprintf(stdout, "%s:", name);
- fprintf(stdout, "%d\n", count);
- }
-
-return rc;
-}
-
-
-
-
-/*************************************************
-* Usage function *
-*************************************************/
-
-static int
-usage(int rc)
-{
-fprintf(stderr, "Usage: pcregrep [-Vchilnsvx] pattern [file] ...\n");
-return rc;
-}
-
-
-
-
-/*************************************************
-* Main program *
-*************************************************/
-
-int
-main(int argc, char **argv)
-{
-int i;
-int rc = 1;
-int options = 0;
-int errptr;
-const char *error;
-BOOL filenames = TRUE;
-
-/* Process the options */
-
-for (i = 1; i < argc; i++)
- {
- char *s;
- if (argv[i][0] != '-') break;
- s = argv[i] + 1;
- while (*s != 0)
- {
- switch (*s++)
- {
- case 'c': count_only = TRUE; break;
- case 'h': filenames = FALSE; break;
- case 'i': options |= PCRE_CASELESS; break;
- case 'l': filenames_only = TRUE;
- case 'n': number = TRUE; break;
- case 's': silent = TRUE; break;
- case 'v': invert = TRUE; break;
- case 'x': whole_lines = TRUE; options |= PCRE_ANCHORED; break;
-
- case 'V':
- fprintf(stderr, "PCRE version %s\n", pcre_version());
- break;
-
- default:
- fprintf(stderr, "pcregrep: unknown option %c\n", s[-1]);
- return usage(2);
- }
- }
- }
-
-/* There must be at least a regexp argument */
-
-if (i >= argc) return usage(0);
-
-/* Compile the regular expression. */
-
-pattern = pcre_compile(argv[i++], options, &error, &errptr, NULL);
-if (pattern == NULL)
- {
- fprintf(stderr, "pcregrep: error in regex at offset %d: %s\n", errptr, error);
- return 2;
- }
-
-/* Study the regular expression, as we will be running it may times */
-
-hints = pcre_study(pattern, 0, &error);
-if (error != NULL)
- {
- fprintf(stderr, "pcregrep: error while studing regex: %s\n", error);
- return 2;
- }
-
-/* If there are no further arguments, do the business on stdin and exit */
-
-if (i >= argc) return pcregrep(stdin, NULL);
-
-/* Otherwise, work through the remaining arguments as files. If there is only
-one, don't give its name on the output. */
-
-if (i == argc - 1) filenames = FALSE;
-if (filenames_only) filenames = TRUE;
-
-for (; i < argc; i++)
- {
- FILE *in = fopen(argv[i], "r");
- if (in == NULL)
- {
- fprintf(stderr, "%s: failed to open: %s\n", argv[i], strerror(errno));
- rc = 2;
- }
- else
- {
- int frc = pcregrep(in, filenames? argv[i] : NULL);
- if (frc == 0 && rc == 1) rc = 0;
- fclose(in);
- }
- }
-
-return rc;
-}
-
-/* End */
diff --git a/pcre/pcreposix.c b/pcre/pcreposix.c
deleted file mode 100644
index 519d2dd5..00000000
--- a/pcre/pcreposix.c
+++ /dev/null
@@ -1,280 +0,0 @@
-/*************************************************
-* Perl-Compatible Regular Expressions *
-*************************************************/
-
-/*
-This is a library of functions to support regular expressions whose syntax
-and semantics are as close as possible to those of the Perl 5 language. See
-the file Tech.Notes for some information on the internals.
-
-This module is a wrapper that provides a POSIX API to the underlying PCRE
-functions.
-
-Written by: Philip Hazel
-
- Copyright (c) 1997-2000 University of Cambridge
-
------------------------------------------------------------------------------
-Permission is granted to anyone to use this software for any purpose on any
-computer system, and to redistribute it freely, subject to the following
-restrictions:
-
-1. This software is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-
-2. The origin of this software must not be misrepresented, either by
- explicit claim or by omission.
-
-3. Altered versions must be plainly marked as such, and must not be
- misrepresented as being the original software.
-
-4. If PCRE is embedded in any software that is released under the GNU
- General Purpose Licence (GPL), then the terms of that licence shall
- supersede any condition above with which it is incompatible.
------------------------------------------------------------------------------
-*/
-
-#include "internal.h"
-#include "pcreposix.h"
-#include "stdlib.h"
-
-
-
-/* Corresponding tables of PCRE error messages and POSIX error codes. */
-
-static const char *estring[] = {
- ERR1, ERR2, ERR3, ERR4, ERR5, ERR6, ERR7, ERR8, ERR9, ERR10,
- ERR11, ERR12, ERR13, ERR14, ERR15, ERR16, ERR17, ERR18, ERR19, ERR20,
- ERR21, ERR22, ERR23, ERR24, ERR25, ERR26, ERR27, ERR29, ERR29, ERR30,
- ERR31 };
-
-static int eint[] = {
- REG_EESCAPE, /* "\\ at end of pattern" */
- REG_EESCAPE, /* "\\c at end of pattern" */
- REG_EESCAPE, /* "unrecognized character follows \\" */
- REG_BADBR, /* "numbers out of order in {} quantifier" */
- REG_BADBR, /* "number too big in {} quantifier" */
- REG_EBRACK, /* "missing terminating ] for character class" */
- REG_ECTYPE, /* "invalid escape sequence in character class" */
- REG_ERANGE, /* "range out of order in character class" */
- REG_BADRPT, /* "nothing to repeat" */
- REG_BADRPT, /* "operand of unlimited repeat could match the empty string" */
- REG_ASSERT, /* "internal error: unexpected repeat" */
- REG_BADPAT, /* "unrecognized character after (?" */
- REG_ESIZE, /* "too many capturing parenthesized sub-patterns" */
- REG_EPAREN, /* "missing )" */
- REG_ESUBREG, /* "back reference to non-existent subpattern" */
- REG_INVARG, /* "erroffset passed as NULL" */
- REG_INVARG, /* "unknown option bit(s) set" */
- REG_EPAREN, /* "missing ) after comment" */
- REG_ESIZE, /* "too many sets of parentheses" */
- REG_ESIZE, /* "regular expression too large" */
- REG_ESPACE, /* "failed to get memory" */
- REG_EPAREN, /* "unmatched brackets" */
- REG_ASSERT, /* "internal error: code overflow" */
- REG_BADPAT, /* "unrecognized character after (?<" */
- REG_BADPAT, /* "lookbehind assertion is not fixed length" */
- REG_BADPAT, /* "malformed number after (?(" */
- REG_BADPAT, /* "conditional group containe more than two branches" */
- REG_BADPAT, /* "assertion expected after (?(" */
- REG_BADPAT, /* "(?p must be followed by )" */
- REG_ECTYPE, /* "unknown POSIX class name" */
- REG_BADPAT, /* "POSIX collating elements are not supported" */
- REG_INVARG, /* "this version of PCRE is not compiled with PCRE_UTF8 support" */
- REG_BADPAT, /* "characters with values > 255 are not yet supported in classes" */
- REG_BADPAT, /* "character value in \x{...} sequence is too large" */
- REG_BADPAT /* "invalid condition (?(0)" */
-};
-
-/* Table of texts corresponding to POSIX error codes */
-
-static const char *pstring[] = {
- "", /* Dummy for value 0 */
- "internal error", /* REG_ASSERT */
- "invalid repeat counts in {}", /* BADBR */
- "pattern error", /* BADPAT */
- "? * + invalid", /* BADRPT */
- "unbalanced {}", /* EBRACE */
- "unbalanced []", /* EBRACK */
- "collation error - not relevant", /* ECOLLATE */
- "bad class", /* ECTYPE */
- "bad escape sequence", /* EESCAPE */
- "empty expression", /* EMPTY */
- "unbalanced ()", /* EPAREN */
- "bad range inside []", /* ERANGE */
- "expression too big", /* ESIZE */
- "failed to get memory", /* ESPACE */
- "bad back reference", /* ESUBREG */
- "bad argument", /* INVARG */
- "match failed" /* NOMATCH */
-};
-
-
-
-
-/*************************************************
-* Translate PCRE text code to int *
-*************************************************/
-
-/* PCRE compile-time errors are given as strings defined as macros. We can just
-look them up in a table to turn them into POSIX-style error codes. */
-
-static int
-pcre_posix_error_code(const char *s)
-{
-size_t i;
-for (i = 0; i < sizeof(estring)/sizeof(char *); i++)
- if (strcmp(s, estring[i]) == 0) return eint[i];
-return REG_ASSERT;
-}
-
-
-
-/*************************************************
-* Translate error code to string *
-*************************************************/
-
-size_t
-regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size)
-{
-const char *message, *addmessage;
-size_t length, addlength;
-
-message = (errcode >= (int)(sizeof(pstring)/sizeof(char *)))?
- "unknown error code" : pstring[errcode];
-length = strlen(message) + 1;
-
-addmessage = " at offset ";
-addlength = (preg != NULL && (int)preg->re_erroffset != -1)?
- strlen(addmessage) + 6 : 0;
-
-if (errbuf_size > 0)
- {
- if (addlength > 0 && errbuf_size >= length + addlength)
- sprintf(errbuf, "%s%s%-6d", message, addmessage, (int)preg->re_erroffset);
- else
- {
- strncpy(errbuf, message, errbuf_size - 1);
- errbuf[errbuf_size-1] = 0;
- }
- }
-
-return length + addlength;
-}
-
-
-
-
-/*************************************************
-* Free store held by a regex *
-*************************************************/
-
-void
-regfree(regex_t *preg)
-{
-(pcre_free)(preg->re_pcre);
-}
-
-
-
-
-/*************************************************
-* Compile a regular expression *
-*************************************************/
-
-/*
-Arguments:
- preg points to a structure for recording the compiled expression
- pattern the pattern to compile
- cflags compilation flags
-
-Returns: 0 on success
- various non-zero codes on failure
-*/
-
-int
-regcomp(regex_t *preg, const char *pattern, int cflags)
-{
-const char *errorptr;
-int erroffset;
-int options = 0;
-
-if ((cflags & REG_ICASE) != 0) options |= PCRE_CASELESS;
-if ((cflags & REG_NEWLINE) != 0) options |= PCRE_MULTILINE;
-
-preg->re_pcre = pcre_compile(pattern, options, &errorptr, &erroffset, NULL);
-preg->re_erroffset = erroffset;
-
-if (preg->re_pcre == NULL) return pcre_posix_error_code(errorptr);
-
-preg->re_nsub = pcre_info(preg->re_pcre, NULL, NULL);
-return 0;
-}
-
-
-
-
-/*************************************************
-* Match a regular expression *
-*************************************************/
-
-/* Unfortunately, PCRE requires 3 ints of working space for each captured
-substring, so we have to get and release working store instead of just using
-the POSIX structures as was done in earlier releases when PCRE needed only 2
-ints. */
-
-int
-regexec(regex_t *preg, const char *string, size_t nmatch,
- regmatch_t pmatch[], int eflags)
-{
-int rc;
-int options = 0;
-int *ovector = NULL;
-
-if ((eflags & REG_NOTBOL) != 0) options |= PCRE_NOTBOL;
-if ((eflags & REG_NOTEOL) != 0) options |= PCRE_NOTEOL;
-
-preg->re_erroffset = (size_t)(-1); /* Only has meaning after compile */
-
-if (nmatch > 0)
- {
- ovector = (int *)malloc(sizeof(int) * nmatch * 3);
- if (ovector == NULL) return REG_ESPACE;
- }
-
-rc = pcre_exec(preg->re_pcre, NULL, string, (int)strlen(string), 0, options,
- ovector, nmatch * 3);
-
-if (rc == 0) rc = nmatch; /* All captured slots were filled in */
-
-if (rc >= 0)
- {
- size_t i;
- for (i = 0; i < (size_t)rc; i++)
- {
- pmatch[i].rm_so = ovector[i*2];
- pmatch[i].rm_eo = ovector[i*2+1];
- }
- if (ovector != NULL) free(ovector);
- for (; i < nmatch; i++) pmatch[i].rm_so = pmatch[i].rm_eo = -1;
- return 0;
- }
-
-else
- {
- if (ovector != NULL) free(ovector);
- switch(rc)
- {
- case PCRE_ERROR_NOMATCH: return REG_NOMATCH;
- case PCRE_ERROR_NULL: return REG_INVARG;
- case PCRE_ERROR_BADOPTION: return REG_INVARG;
- case PCRE_ERROR_BADMAGIC: return REG_INVARG;
- case PCRE_ERROR_UNKNOWN_NODE: return REG_ASSERT;
- case PCRE_ERROR_NOMEMORY: return REG_ESPACE;
- default: return REG_ASSERT;
- }
- }
-}
-
-/* End of pcreposix.c */
diff --git a/pcre/pcreposix.h b/pcre/pcreposix.h
deleted file mode 100644
index 7660acbd..00000000
--- a/pcre/pcreposix.h
+++ /dev/null
@@ -1,88 +0,0 @@
-/*************************************************
-* Perl-Compatible Regular Expressions *
-*************************************************/
-
-/* Copyright (c) 1997-2000 University of Cambridge */
-
-#ifndef _PCREPOSIX_H
-#define _PCREPOSIX_H
-
-/* This is the header for the POSIX wrapper interface to the PCRE Perl-
-Compatible Regular Expression library. It defines the things POSIX says should
-be there. I hope. */
-
-/* Have to include stdlib.h in order to ensure that size_t is defined. */
-
-#include
-
-/* Allow for C++ users */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* Options defined by POSIX. */
-
-#define REG_ICASE 0x01
-#define REG_NEWLINE 0x02
-#define REG_NOTBOL 0x04
-#define REG_NOTEOL 0x08
-
-/* These are not used by PCRE, but by defining them we make it easier
-to slot PCRE into existing programs that make POSIX calls. */
-
-#define REG_EXTENDED 0
-#define REG_NOSUB 0
-
-/* Error values. Not all these are relevant or used by the wrapper. */
-
-enum {
- REG_ASSERT = 1, /* internal error ? */
- REG_BADBR, /* invalid repeat counts in {} */
- REG_BADPAT, /* pattern error */
- REG_BADRPT, /* ? * + invalid */
- REG_EBRACE, /* unbalanced {} */
- REG_EBRACK, /* unbalanced [] */
- REG_ECOLLATE, /* collation error - not relevant */
- REG_ECTYPE, /* bad class */
- REG_EESCAPE, /* bad escape sequence */
- REG_EMPTY, /* empty expression */
- REG_EPAREN, /* unbalanced () */
- REG_ERANGE, /* bad range inside [] */
- REG_ESIZE, /* expression too big */
- REG_ESPACE, /* failed to get memory */
- REG_ESUBREG, /* bad back reference */
- REG_INVARG, /* bad argument */
- REG_NOMATCH /* match failed */
-};
-
-
-/* The structure representing a compiled regular expression. */
-
-typedef struct {
- void *re_pcre;
- size_t re_nsub;
- size_t re_erroffset;
-} regex_t;
-
-/* The structure in which a captured offset is returned. */
-
-typedef int regoff_t;
-
-typedef struct {
- regoff_t rm_so;
- regoff_t rm_eo;
-} regmatch_t;
-
-/* The functions */
-
-extern int regcomp(regex_t *, const char *, int);
-extern int regexec(regex_t *, const char *, size_t, regmatch_t *, int);
-extern size_t regerror(int, const regex_t *, char *, size_t);
-extern void regfree(regex_t *);
-
-#ifdef __cplusplus
-} /* extern "C" */
-#endif
-
-#endif /* End of pcreposix.h */
diff --git a/pcre/pcretest.c b/pcre/pcretest.c
deleted file mode 100644
index ee5df5f0..00000000
--- a/pcre/pcretest.c
+++ /dev/null
@@ -1,1225 +0,0 @@
-/*************************************************
-* PCRE testing program *
-*************************************************/
-
-#include
-#include
-#include
-#include
-#include
-#include
-
-/* Use the internal info for displaying the results of pcre_study(). */
-
-#include "internal.h"
-
-/* It is possible to compile this test program without including support for
-testing the POSIX interface, though this is not available via the standard
-Makefile. */
-
-#if !defined NOPOSIX
-#include "pcreposix.h"
-#endif
-
-#ifndef CLOCKS_PER_SEC
-#ifdef CLK_TCK
-#define CLOCKS_PER_SEC CLK_TCK
-#else
-#define CLOCKS_PER_SEC 100
-#endif
-#endif
-
-#define LOOPREPEAT 20000
-
-
-static FILE *outfile;
-static int log_store = 0;
-static size_t gotten_store;
-
-
-
-static int utf8_table1[] = {
- 0x0000007f, 0x000007ff, 0x0000ffff, 0x001fffff, 0x03ffffff, 0x7fffffff};
-
-static int utf8_table2[] = {
- 0, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc};
-
-static int utf8_table3[] = {
- 0xff, 0x1f, 0x0f, 0x07, 0x03, 0x01};
-
-
-/*************************************************
-* Convert character value to UTF-8 *
-*************************************************/
-
-/* This function takes an integer value in the range 0 - 0x7fffffff
-and encodes it as a UTF-8 character in 0 to 6 bytes.
-
-Arguments:
- cvalue the character value
- buffer pointer to buffer for result - at least 6 bytes long
-
-Returns: number of characters placed in the buffer
- -1 if input character is negative
- 0 if input character is positive but too big (only when
- int is longer than 32 bits)
-*/
-
-static int
-ord2utf8(int cvalue, unsigned char *buffer)
-{
-register int i, j;
-for (i = 0; i < sizeof(utf8_table1)/sizeof(int); i++)
- if (cvalue <= utf8_table1[i]) break;
-if (i >= sizeof(utf8_table1)/sizeof(int)) return 0;
-if (cvalue < 0) return -1;
-*buffer++ = utf8_table2[i] | (cvalue & utf8_table3[i]);
-cvalue >>= 6 - i;
-for (j = 0; j < i; j++)
- {
- *buffer++ = 0x80 | (cvalue & 0x3f);
- cvalue >>= 6;
- }
-return i + 1;
-}
-
-
-/*************************************************
-* Convert UTF-8 string to value *
-*************************************************/
-
-/* This function takes one or more bytes that represents a UTF-8 character,
-and returns the value of the character.
-
-Argument:
- buffer a pointer to the byte vector
- vptr a pointer to an int to receive the value
-
-Returns: > 0 => the number of bytes consumed
- -6 to 0 => malformed UTF-8 character at offset = (-return)
-*/
-
-int
-utf82ord(unsigned char *buffer, int *vptr)
-{
-int c = *buffer++;
-int d = c;
-int i, j, s;
-
-for (i = -1; i < 6; i++) /* i is number of additional bytes */
- {
- if ((d & 0x80) == 0) break;
- d <<= 1;
- }
-
-if (i == -1) { *vptr = c; return 1; } /* ascii character */
-if (i == 0 || i == 6) return 0; /* invalid UTF-8 */
-
-/* i now has a value in the range 1-5 */
-
-d = c & utf8_table3[i];
-s = 6 - i;
-
-for (j = 0; j < i; j++)
- {
- c = *buffer++;
- if ((c & 0xc0) != 0x80) return -(j+1);
- d |= (c & 0x3f) << s;
- s += 6;
- }
-
-/* Check that encoding was the correct unique one */
-
-for (j = 0; j < sizeof(utf8_table1)/sizeof(int); j++)
- if (d <= utf8_table1[j]) break;
-if (j != i) return -(i+1);
-
-/* Valid value */
-
-*vptr = d;
-return i+1;
-}
-
-
-
-
-
-
-/* Debugging function to print the internal form of the regex. This is the same
-code as contained in pcre.c under the DEBUG macro. */
-
-static const char *OP_names[] = {
- "End", "\\A", "\\B", "\\b", "\\D", "\\d",
- "\\S", "\\s", "\\W", "\\w", "\\Z", "\\z",
- "Opt", "^", "$", "Any", "chars", "not",
- "*", "*?", "+", "+?", "?", "??", "{", "{", "{",
- "*", "*?", "+", "+?", "?", "??", "{", "{", "{",
- "*", "*?", "+", "+?", "?", "??", "{", "{", "{",
- "*", "*?", "+", "+?", "?", "??", "{", "{",
- "class", "Ref", "Recurse",
- "Alt", "Ket", "KetRmax", "KetRmin", "Assert", "Assert not",
- "AssertB", "AssertB not", "Reverse", "Once", "Cond", "Cref",
- "Brazero", "Braminzero", "Bra"
-};
-
-
-static void print_internals(pcre *re)
-{
-unsigned char *code = ((real_pcre *)re)->code;
-
-fprintf(outfile, "------------------------------------------------------------------\n");
-
-for(;;)
- {
- int c;
- int charlength;
-
- fprintf(outfile, "%3d ", (int)(code - ((real_pcre *)re)->code));
-
- if (*code >= OP_BRA)
- {
- fprintf(outfile, "%3d Bra %d", (code[1] << 8) + code[2], *code - OP_BRA);
- code += 2;
- }
-
- else switch(*code)
- {
- case OP_END:
- fprintf(outfile, " %s\n", OP_names[*code]);
- fprintf(outfile, "------------------------------------------------------------------\n");
- return;
-
- case OP_OPT:
- fprintf(outfile, " %.2x %s", code[1], OP_names[*code]);
- code++;
- break;
-
- case OP_COND:
- fprintf(outfile, "%3d Cond", (code[1] << 8) + code[2]);
- code += 2;
- break;
-
- case OP_CREF:
- fprintf(outfile, " %.2d %s", code[1], OP_names[*code]);
- code++;
- break;
-
- case OP_CHARS:
- charlength = *(++code);
- fprintf(outfile, "%3d ", charlength);
- while (charlength-- > 0)
- if (isprint(c = *(++code))) fprintf(outfile, "%c", c);
- else fprintf(outfile, "\\x%02x", c);
- break;
-
- case OP_KETRMAX:
- case OP_KETRMIN:
- case OP_ALT:
- case OP_KET:
- case OP_ASSERT:
- case OP_ASSERT_NOT:
- case OP_ASSERTBACK:
- case OP_ASSERTBACK_NOT:
- case OP_ONCE:
- fprintf(outfile, "%3d %s", (code[1] << 8) + code[2], OP_names[*code]);
- code += 2;
- break;
-
- case OP_REVERSE:
- fprintf(outfile, "%3d %s", (code[1] << 8) + code[2], OP_names[*code]);
- code += 2;
- break;
-
- case OP_STAR:
- case OP_MINSTAR:
- case OP_PLUS:
- case OP_MINPLUS:
- case OP_QUERY:
- case OP_MINQUERY:
- case OP_TYPESTAR:
- case OP_TYPEMINSTAR:
- case OP_TYPEPLUS:
- case OP_TYPEMINPLUS:
- case OP_TYPEQUERY:
- case OP_TYPEMINQUERY:
- if (*code >= OP_TYPESTAR)
- fprintf(outfile, " %s", OP_names[code[1]]);
- else if (isprint(c = code[1])) fprintf(outfile, " %c", c);
- else fprintf(outfile, " \\x%02x", c);
- fprintf(outfile, "%s", OP_names[*code++]);
- break;
-
- case OP_EXACT:
- case OP_UPTO:
- case OP_MINUPTO:
- if (isprint(c = code[3])) fprintf(outfile, " %c{", c);
- else fprintf(outfile, " \\x%02x{", c);
- if (*code != OP_EXACT) fprintf(outfile, ",");
- fprintf(outfile, "%d}", (code[1] << 8) + code[2]);
- if (*code == OP_MINUPTO) fprintf(outfile, "?");
- code += 3;
- break;
-
- case OP_TYPEEXACT:
- case OP_TYPEUPTO:
- case OP_TYPEMINUPTO:
- fprintf(outfile, " %s{", OP_names[code[3]]);
- if (*code != OP_TYPEEXACT) fprintf(outfile, "0,");
- fprintf(outfile, "%d}", (code[1] << 8) + code[2]);
- if (*code == OP_TYPEMINUPTO) fprintf(outfile, "?");
- code += 3;
- break;
-
- case OP_NOT:
- if (isprint(c = *(++code))) fprintf(outfile, " [^%c]", c);
- else fprintf(outfile, " [^\\x%02x]", c);
- break;
-
- case OP_NOTSTAR:
- case OP_NOTMINSTAR:
- case OP_NOTPLUS:
- case OP_NOTMINPLUS:
- case OP_NOTQUERY:
- case OP_NOTMINQUERY:
- if (isprint(c = code[1])) fprintf(outfile, " [^%c]", c);
- else fprintf(outfile, " [^\\x%02x]", c);
- fprintf(outfile, "%s", OP_names[*code++]);
- break;
-
- case OP_NOTEXACT:
- case OP_NOTUPTO:
- case OP_NOTMINUPTO:
- if (isprint(c = code[3])) fprintf(outfile, " [^%c]{", c);
- else fprintf(outfile, " [^\\x%02x]{", c);
- if (*code != OP_NOTEXACT) fprintf(outfile, ",");
- fprintf(outfile, "%d}", (code[1] << 8) + code[2]);
- if (*code == OP_NOTMINUPTO) fprintf(outfile, "?");
- code += 3;
- break;
-
- case OP_REF:
- fprintf(outfile, " \\%d", *(++code));
- code++;
- goto CLASS_REF_REPEAT;
-
- case OP_CLASS:
- {
- int i, min, max;
- code++;
- fprintf(outfile, " [");
-
- for (i = 0; i < 256; i++)
- {
- if ((code[i/8] & (1 << (i&7))) != 0)
- {
- int j;
- for (j = i+1; j < 256; j++)
- if ((code[j/8] & (1 << (j&7))) == 0) break;
- if (i == '-' || i == ']') fprintf(outfile, "\\");
- if (isprint(i)) fprintf(outfile, "%c", i); else fprintf(outfile, "\\x%02x", i);
- if (--j > i)
- {
- fprintf(outfile, "-");
- if (j == '-' || j == ']') fprintf(outfile, "\\");
- if (isprint(j)) fprintf(outfile, "%c", j); else fprintf(outfile, "\\x%02x", j);
- }
- i = j;
- }
- }
- fprintf(outfile, "]");
- code += 32;
-
- CLASS_REF_REPEAT:
-
- switch(*code)
- {
- case OP_CRSTAR:
- case OP_CRMINSTAR:
- case OP_CRPLUS:
- case OP_CRMINPLUS:
- case OP_CRQUERY:
- case OP_CRMINQUERY:
- fprintf(outfile, "%s", OP_names[*code]);
- break;
-
- case OP_CRRANGE:
- case OP_CRMINRANGE:
- min = (code[1] << 8) + code[2];
- max = (code[3] << 8) + code[4];
- if (max == 0) fprintf(outfile, "{%d,}", min);
- else fprintf(outfile, "{%d,%d}", min, max);
- if (*code == OP_CRMINRANGE) fprintf(outfile, "?");
- code += 4;
- break;
-
- default:
- code--;
- }
- }
- break;
-
- /* Anything else is just a one-node item */
-
- default:
- fprintf(outfile, " %s", OP_names[*code]);
- break;
- }
-
- code++;
- fprintf(outfile, "\n");
- }
-}
-
-
-
-/* Character string printing function. A "normal" and a UTF-8 version. */
-
-static void pchars(unsigned char *p, int length, int utf8)
-{
-int c;
-while (length-- > 0)
- {
- if (utf8)
- {
- int rc = utf82ord(p, &c);
- if (rc > 0)
- {
- length -= rc - 1;
- p += rc;
- if (c < 256 && isprint(c)) fprintf(outfile, "%c", c);
- else fprintf(outfile, "\\x{%02x}", c);
- continue;
- }
- }
-
- /* Not UTF-8, or malformed UTF-8 */
-
- if (isprint(c = *(p++))) fprintf(outfile, "%c", c);
- else fprintf(outfile, "\\x%02x", c);
- }
-}
-
-
-
-/* Alternative malloc function, to test functionality and show the size of the
-compiled re. */
-
-static void *new_malloc(size_t size)
-{
-gotten_store = size;
-if (log_store)
- fprintf(outfile, "Memory allocation (code space): %d\n",
- (int)((int)size - offsetof(real_pcre, code[0])));
-return malloc(size);
-}
-
-
-
-
-/* Get one piece of information from the pcre_fullinfo() function */
-
-static void new_info(pcre *re, pcre_extra *study, int option, void *ptr)
-{
-int rc;
-if ((rc = pcre_fullinfo(re, study, option, ptr)) < 0)
- fprintf(outfile, "Error %d from pcre_fullinfo(%d)\n", rc, option);
-}
-
-
-
-
-/* Read lines from named file or stdin and write to named file or stdout; lines
-consist of a regular expression, in delimiters and optionally followed by
-options, followed by a set of test data, terminated by an empty line. */
-
-int main(int argc, char **argv)
-{
-FILE *infile = stdin;
-int options = 0;
-int study_options = 0;
-int op = 1;
-int timeit = 0;
-int showinfo = 0;
-int showstore = 0;
-int posix = 0;
-int debug = 0;
-int done = 0;
-unsigned char buffer[30000];
-unsigned char dbuffer[1024];
-
-/* Static so that new_malloc can use it. */
-
-outfile = stdout;
-
-/* Scan options */
-
-while (argc > 1 && argv[op][0] == '-')
- {
- if (strcmp(argv[op], "-s") == 0 || strcmp(argv[op], "-m") == 0)
- showstore = 1;
- else if (strcmp(argv[op], "-t") == 0) timeit = 1;
- else if (strcmp(argv[op], "-i") == 0) showinfo = 1;
- else if (strcmp(argv[op], "-d") == 0) showinfo = debug = 1;
- else if (strcmp(argv[op], "-p") == 0) posix = 1;
- else
- {
- printf("*** Unknown option %s\n", argv[op]);
- printf("Usage: pcretest [-d] [-i] [-p] [-s] [-t] [ [